期刊文献+

交通事件持续时间预测的贝叶斯网络模型 被引量:3

Bayesian Network Model for the Prediction of Traffic Incident Duration
在线阅读 下载PDF
导出
摘要 交通事件是引发道路交通拥堵的主要因素之一,通过实时交通诱导等手段可以降低其对交通运行造成的影响,而及时准确地预测事件持续时间则是实现有效管控的前提条件。基于MIT打分函数,融合自上而下的网络生长规则,引入蚁群算法寻找最优网络结构,即以S-ACOB算法为核心搭建最优贝叶斯网络模型。增加了节点随机选择机制及局部结构概率选择模式,降低局部最优结果生成概率,确保贝叶斯网络的健壮性。通过实例验证及对比分析,针对观测节点属性完备和缺失的情况,网络模型预测精度分别为76.97%和93.23%,平均预测精度可达87.82%,证明该模型可以有效地预测交通事件持续时间。 Traffic incident is one of the main factors that lead to traffic congestions.Through controlling methods such as real-time traffic guidance,its impacts on traffic operation can be reduced.Accurately prediction of traffic congestion duration is a prerequisite for effective traffic control.Based on MIT scoring functions,an S-ACOB algorithm as the core of the Bayesian network model is developed.The networks are generated from top to bottom with an ant colony algorithm searching for the optimal network structure.To increase the robustness of the proposed Bayesian network,a random selection mechanism for the nodes and a partial probabilistic selection model for the local structure are introduced.Through an empirical study and comparative analyses,the average precision is up to 87.82%,which is superior to the alternatives reported in the previous research.regarding those nods with the complete and incomplete node properties,the accuracy of the network prediction model is up to 76.97% and 93.23%.The results show that this model can effectively predict the duration of traffic congestions.
出处 《交通信息与安全》 2015年第6期65-71,共7页 Journal of Transport Information and Safety
基金 国家自然科学基金项目(批准号:71210001)资助
关键词 交通工程 交通事件 持续时间预测 贝叶斯网络 结构学习 MIT算法 S-ACOB算法 traffic engineering traffic incident duration prediction Bayesian network structure learning MIT algorithm S-ACOB algorithm
  • 相关文献

参考文献15

二级参考文献67

  • 1陈越,李海华,兰巨龙.基于边缘簇组播树构造算法的分析与改进[J].计算机应用研究,2005,22(8):187-189. 被引量:1
  • 2刘伟铭,管丽萍,尹湘源.基于多元回归分析的事件持续时间预测[J].公路交通科技,2005,22(11):126-129. 被引量:15
  • 3冀俊忠,刘椿年,阎静.一种快速的贝叶斯网结构学习算法[J].计算机研究与发展,2007,44(3):412-419. 被引量:9
  • 4吴超仲,张晖,毛喆,初秀民,严新平.基于驾驶操作行为的驾驶员疲劳状态识别模型研究[J].中国安全科学学报,2007,17(4):162-165. 被引量:45
  • 5张连文,郭海鹏.贝叶斯网引论[M].北京:科学出版社,2007.
  • 6Campos L M.Independency relationships and learning algorithms for singly connected networks[J].Journal of Experimental and Theoretical Artificial Intelligence,1998,10(4):511-549.
  • 7Campos L M,Huete J F.A new approach for learning Bayesian networks using independence criteria[J].International Journal of Approximate Reasoning,2000,24(1):11-37.
  • 8Lam W,Bacchus F.Learning Bayesian networks:an approach based on the MDL principle[J].Computational Intelligence,1994,10(4):269-293.
  • 9Heckerman D,Geiger D,Chickering D M.Learning Bayesian networks:the combination of knowledge and statistical data[J].Machine Learning,1995,20(1):197-244.
  • 10Campos L M,Fernandez L J,Gamez J,et al.Ant colony optimization for learning Bayesian networks[J].International Journal of Approximate Reasoning,2002,31(21):291-311.

共引文献53

同被引文献18

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部