期刊文献+

基于K-最近邻的交通事件持续时间预测模型 被引量:4

Study on the Traffic Incident Duration Time Prediction Based on K-nearest Neighbor Model
在线阅读 下载PDF
导出
摘要 通过对高速公路交通事件的性质和特征进行分析,选择对持续时间影响较大的属性(事件类别、发生时间、地点、天气、伤亡程度、涉及车辆数、占用车道数)构成了描述交通事件的向量,对各属性进行了分类与量化.以交通事件的历史数据集合为基础构建N维搜索空间,计算了当前交通事件与历史交通事件之间的欧式距离,通过寻找距离最近的K个元素建立了最近邻预测模型.采用单因素方差分析法标定了变量权重,根据最小误差法确定了最佳K值.实例应用表明,K-最近邻预测模型对持续时间范围为30 min≤T<90 min、90 min≤T<180 min交通事件预测精度较高,适合高速公路有大量历史数据的情况下应用. Through analyzing freeway traffic incidents’characters and properties,this paper describe traffic inci-dent by a series variables,such as the categories,time,site,whether,dead and injury,vehicle,lanes,et.al. Since traffic incident has similarities,a N dimensional space has been built up based on historic traffic incident. The prediction model set up using K-nearest neighbor method,which predict the duration time by finding the most nearest neighbor in the historic space.In the model,the weight of the variable determined by using ANO-VA analysis,and the optimal K got by minimizing the prediction error.Finally,this paper use K-nearest neigh-bor model to predict different groups of field data,it shows that this model has a good performance for the mid-group of incidents,which duration times are:30 min≤T〈90 min,and 90 min≤T〈180 min.Apparently,this model could be used for the freeway which has a large amount of historic data.
出处 《昆明理工大学学报(自然科学版)》 CAS 北大核心 2014年第6期45-50,共6页 Journal of Kunming University of Science and Technology(Natural Science)
基金 国家自然科学基金项目(51308569)
关键词 高速公路 交通事件 K-最近邻 持续时间 预测 Freeway Traffic incident K-nearest neighbor Duration time Prediction
  • 相关文献

参考文献12

  • 1刘伟铭,管丽萍,尹湘源.基于多元回归分析的事件持续时间预测[J].公路交通科技,2005,22(11):126-129. 被引量:15
  • 2Garib A,Radwan A E,Al-Deek H.Estimating Magnitude and Duration of Incident Delays[J].Journal of Transportation Engineering,1997,123(6):459-466.
  • 3Golob T F,Wilfred W R,John D L.An Analysis of the Severity and Incident Duration of Truck-Involved Freeway Accidents[J].Accident Analysis&Prevention,1987,19(4):375-395.
  • 4Nam D,Fred M.An Exploratory Hazard-Based Analysis of Highway Incident Duration[J].Transportation Research(Part A),2000,34(2):85-102.
  • 5康国祥,方守恩.基于风险分析的交通事件持续时间预测[J].同济大学学报(自然科学版),2012,40(2):241-245. 被引量:10
  • 6Smith K,Smith B L.Forecasting the clearance time of freeway accidents[R].National ITS Research Center,Research Report No.UVACTS-15-035,2001,26-40.
  • 7Zhan C,Gan A,Hadi M.Prediction of lane clearance time of freeway incidents using the M5P tree algorithm[J].IEEE Transaction on intelligent transportation systems,2011,12(4):1549-1557.
  • 8Lin P W,Zou N,Chang G L.Integration of a discrete choice model and a rule-based system for estimation of incident duration:A case study in Maryland[C]//83rd Annual Meeting,Transp Res Board.Washington,DC,2004.
  • 9Yazici M,Ozbay K,Chien S I.Comprehensive analysis of important questions related to incident durations based on past studies and recent empirical data[C]//the 89th Annual Meeting,Transp Res Board.Washington,DC,2010.
  • 10Chang H L,Chang T P.Prediction of Freeway Incident Duration based on Classification Tree Analysis[J].Proceedings of the Eastern Asia Society for Transportation Studies,2013(9):1-14.

二级参考文献56

共引文献30

同被引文献32

  • 1Transportation Research Board. Highway Capacity Manual [ M]. Washington DC.. National Research Council, 2000.
  • 2GOLOB T, WIFFRED, W R An analysis of the sever- ity and incident duration of truck-involved freeway accidents [J]. Accident Analysis ~ Prevention, 1987,19 (4), 375-380.
  • 3HOJATI A T, FERREIRA L, WASHINGTON S, et al. Hazard based models for freeway traffic inci- dent duration[J~. Accident Analysis ~ Prevention, 2013, 52(12) :171-181.
  • 4COHEN S, NOUVELIERE C. Modelling incident duration on an urban expressway [C~. Transporta- tion Systems 1997, Greece: International Federa- tion of Automatic Control, 1997.
  • 5WU W W, CHEN S Y, ZHENG C J. Traffic inci- dent duration prediction based on support vector regression [J]. American Society of Civil Engi- neers, 2011, (421) :2412-2421.
  • 6BREIMAN L. Random forests[J]. Machine Learning, 2001,45(1) : 5-32.
  • 7BREIMAN L. Bagging predictors [J~. Machine learn- ing, 1996, 24(2): 123-140.
  • 8LEWIS, C D. Industrial and business forecasting methods [ M]. London: Butterworth-Heinemann, 1982.
  • 9姬杨蓓蓓,张小宁,孙立军.基于贝叶斯决策树的交通事件持续时间预测[J].同济大学学报(自然科学版),2008,36(3):319-324. 被引量:26
  • 10范东凯,曹凯.基于主成分分析法的城市道路交通安全评价[J].中国安全科学学报,2010,20(10):147-151. 被引量:39

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部