期刊文献+

基于PCA-SVDD的冷水机组故障检测方法 被引量:13

PCA-SVDD-based chiller fault detection method
原文传递
导出
摘要 分析了基于PCA-SVDD方法的冷水机组故障检测效率,结合PCA和SVDD方法的优点,提出了一种基于PCA-SVDD的冷水机组故障检测方法.通过PCA将正常数据所在的测量空间分解为主元子空间和残差子空间,取正常数据的残差子空间得分矩阵作为目标类数据建立SVDD模型,利用RP-1043中冷水机组实验数据验证故障检测性能,并与传统PCA和SVDD冷水机组故障检测结果进行对比.结果表明:PCA-SVDD方法可用于冷水机组故障检测,进一步提高了故障检测能力,且故障检测结果整体优于传统SVDD和PCA方法;用于冷水机组常见的故障检测,获得了较高的冷水机组故障检测效率.此方法有利于及早发现故障,减少损失,对小幅故障检测效率的提高尤为明显. A PCA (principal component analysis )‐SVDD (support vector data description )‐based method was presented for chiller fault detection .First ,chiller fault‐free operating data were decom‐posed into two subspaces ,i .e .principle component subspace (PCs) and residual subspace (Rs) ac‐cording to the PCA method ,and then a SVDD model was developed based on the residual score matrix to detect chiller faults .Chiller experimental data from RP‐1043 were exploited to validate the PCA‐SVDD‐based method ,and the PCA‐SVDD‐based chiller fault detection results were compared with those obtained by conventional PCA‐based and SVDD‐based methods .Results show that the PCA‐SVDD‐based method can be used for chiller fault detection ,and most of its fault detection results are better than those of PCA‐based and SVDD‐based method ,especially on lower fault severity level , w hich is conducive to early fault detection and reduce the loss .
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第8期119-122,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(51328602) 压缩机技术国家重点实验室(合肥通用机械研究院)开放基金资助项目 北京建筑大学供热供燃气通风及空调工程北京市重点实验室研究基金资助课题(NR2013K02)
关键词 冷水机组 故障检测 主元分析 支持向量数据描述 检测效率 chiller fault detection principal component analysis support vector data description detection efficiency
  • 相关文献

参考文献12

  • 1Comstock M C,Braun J E,Groll E A.A survey of common faults for chillers.[J].Ashrae Transactions,2002,108(1):819-825.
  • 2Zhao X,Yang M,Li H.Decoupling features for fault detection and diagnosis on centrifugal chillers(1486-RP)[J].Energy and Buildings,2011,17:86-106.
  • 3Zhao Y,Wang S,Xiao F,et al.A simplified physical model-based fault detection and diagnosis strategy and its customized tool for centrifugal chillers[J].HVAC&R Research,2013,19(3):283-294.
  • 4胡云鹏,陈焕新,周诚,徐荣吉.基于小波去噪的冷水机组传感器故障检测[J].华中科技大学学报(自然科学版),2013,41(3):16-19. 被引量:21
  • 5Katipamula S,Brambley M R.Review article:methods for fault detection,diagnostics,and prognostics for building systems—a review,part II[J].HVAC&R Research,2005,11(2):169-187.
  • 6Hu Y,Chen H,Xie J,et al.Chiller sensor fault detection using a self-Adaptive Principal Component Analysis method[J].Energy and Buildings,2012,54:252-258.
  • 7胡云鹏,陈焕新,周诚,杨小双,徐荣吉.基于主元分析法的冷水机组传感器故障检测效率分析[J].化工学报,2012,63(S2):85-88. 被引量:17
  • 8Du Z,Jin X,Wu L.Fault detection and diagnosis based on improved PCA with JAA method in VAV systems[J].Building and Environment,2007,42(9):3221-3232.
  • 9Zhao Y,Wang S,Xiao F.Pattern recognition-based chillers fault detection method using support vector data description(SVDD)[J].Applied Energy,2013,112:1041-1048.
  • 10Han H,Gu B,Kang J,et al.Study on a hybrid SVM model for chiller FDD applications[J].Applied Thermal Engineering,2011,31(4):582-592.

二级参考文献31

  • 1郝小礼,陈友明,张国强.小波滤波在小故障检测中的应用[J].暖通空调,2005,35(8):138-140. 被引量:6
  • 2张恒,李安宗,李传伟,屈景辉,廖琪梅.基于离散平稳小波变换的无线随钻系统测试信号处理[J].石油钻探技术,2007,35(2):49-51. 被引量:7
  • 3Katipamula S, Brambley M R. Methods for fault de- tection, diagnostics, and prognostics for building sys- tems-a review, part I [J]. HVACgaR Research, 2005, 11(1): 3-25.
  • 4Wang S W, Cui J T. Sensor-fault detection, diagno- sis and estimation for centrifugal chiller systems using principal-component analysis method [J ]. Applied Energy, 2005, 82(3) : 197-213.
  • 5Hu Y P, Chen H X, Xie J L, et al. Chiller sensor fault detection using a self-adaptive principal compo- nent analysis method [J]. Energy and Buildings, 2012, 54: 252-258.
  • 6Chen Y M, Lan L L. A fault detection technique for air-source heat pump water chiller/heaters[J]. Ener- gy and Buildings, 2009, 41(8): 881-887.
  • 7Chen Y M, Lan L L. Fault detection, diagnosis and data recovery for a real building heating/cooling bill ing system[J]. Energy Conversion and Management, 2010, 51(5): 1015-1024.
  • 8Wang S W, Xiao F. AHU sensor fault diagnosis u- sing principal component analysis method[J]. Energy and Buildings, 2004, 36(2) : 147-160.
  • 9Du Z M, Jin X Q, Wu L Z. PCA-FDA-based fault di- agnosis for sensors in VAV systems [J]. Hvac&R Research, 2007, 13(2): 349-367.
  • 10Wang S W, Chen Y M. Sensor validation and recon- struction for building central chilling systems based on principal component analysis[J]. Energy Conver- sion and Management, 2004, 45(5): 673-695.

共引文献34

同被引文献138

引证文献13

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部