期刊文献+

基于提升小波与SVDD的非线性profile监控

Nonlinear Profile Monitoring Based on Lifting Wavelet and SVDD
在线阅读 下载PDF
导出
摘要 针对函数式复杂且观测点位置固定的非线性profile监控问题,提出一种基于提升小波重构与支持向量数据描述(Support Vector Data Description,SVDD)的方法来监控非线性轮廓图的异常波动。首先采用提升小波对原始数据进行去噪重构处理,还原初始数据的有用信息。其次对去噪后的重构数据进行SVDD模型训练,通过Bootstrap重采样的方法确定控制限,提高模型寻参效率。最后对训练的模型进行生产过程的异常轮廓监控性能研究。通过计算机仿真实验表明,该方法在质量监控过程中的平均链长较短,能及时发现异常轮廓。 In order to solve the problem of nonlinear profile monitoring with complex functions and fixed observation points,a method based on lifting wavelet reconstruction and support vector data description(Support Vector Data Description,SVDD)is proposed to monitor the abnormal fluctuations of nonlinear contour images.First,the lifting wavelet is used to reconstruct the original data and restore the useful information of the original data.Secondly,the reconstructed data after denoising is trained by SVDD model,and the control limit is determined by the method of Bootstrap to improve the efficiency of finding model parameters.Finally,the abnormal profile monitoring performance of the training model is studied.The results of computer simulation show that the average chain length of this method is short in the process of quality control and the abnormal profile can be found in time.
作者 李虹灿 田光杰 LI Hong-can;TIAN Guang-jie(Business School,Zhengzhou University,Zhengzhou 450001,China)
机构地区 郑州大学商学院
出处 《组合机床与自动化加工技术》 北大核心 2019年第9期152-156,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金项目(71672182,71711540309,71272207) 国家自然科学基金重点项目(U1604262)
关键词 非线性profile监控 提升小波 支持向量数据描述 nonlinear profile monitoring lifting wavelet support vector datadescription
  • 相关文献

参考文献3

二级参考文献27

  • 1胡云鹏,陈焕新,周诚,杨小双,徐荣吉.基于主元分析法的冷水机组传感器故障检测效率分析[J].化工学报,2012,63(S2):85-88. 被引量:17
  • 2张沐光,宋执环.一种基于DLPP的动态过程故障检测方法[J].华中科技大学学报(自然科学版),2009,37(S1):62-65. 被引量:3
  • 3李晓峰,徐玖平,王荫清,贺昌政.BP人工神经网络自适应学习算法的建立及其应用[J].系统工程理论与实践,2004,24(5):1-8. 被引量:78
  • 4Comstock M C,Braun J E,Groll E A.A survey of common faults for chillers.[J].Ashrae Transactions,2002,108(1):819-825.
  • 5Zhao X,Yang M,Li H.Decoupling features for fault detection and diagnosis on centrifugal chillers(1486-RP)[J].Energy and Buildings,2011,17:86-106.
  • 6Zhao Y,Wang S,Xiao F,et al.A simplified physical model-based fault detection and diagnosis strategy and its customized tool for centrifugal chillers[J].HVAC&R Research,2013,19(3):283-294.
  • 7Katipamula S,Brambley M R.Review article:methods for fault detection,diagnostics,and prognostics for building systems—a review,part II[J].HVAC&R Research,2005,11(2):169-187.
  • 8Hu Y,Chen H,Xie J,et al.Chiller sensor fault detection using a self-Adaptive Principal Component Analysis method[J].Energy and Buildings,2012,54:252-258.
  • 9Du Z,Jin X,Wu L.Fault detection and diagnosis based on improved PCA with JAA method in VAV systems[J].Building and Environment,2007,42(9):3221-3232.
  • 10Zhao Y,Wang S,Xiao F.Pattern recognition-based chillers fault detection method using support vector data description(SVDD)[J].Applied Energy,2013,112:1041-1048.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部