期刊文献+

基于无参考质量评价模型的静脉图像采集方法 被引量:7

Vein Image Acquisition Method Based on Quality Assessment Model Without Reference
在线阅读 下载PDF
导出
摘要 由于不同人的手背静脉属性间存在较大差异,因此对于不同静脉对象,在固定采集系统参数条件下很难都采集到高质量的静脉图像,这里提出了一种针对静脉特点的质量评价模型,并设计了基于评价结果的自寻优静脉图像采集方法.首先,提出了基于关键信息熵的测度函数,衡量了静脉信息的完整性;其次,提出了基于轮廓波分解的测度函数,用于评价静脉方向性信息的丰富性;再次,将两种测度函数融合,构成了客观的无参考的质量评价模型;最后,在图像自寻优过程中,提出了迭代淘汰机制,克服了最速下降法在寻优过程易陷入局部最优的缺陷.实验表明,提出的质量评价模型是可控的,且满足人眼视觉系统的视觉特性,同时,通过提出的迭代淘汰机制,降低了寻优过程的迭代次数,保证了采集系统的实时性要求. Because of dorsal vein properties difference between different persons,for different vein objects not all vein images with high qualities can be acquired when fixing acquisition system parameters,in the paper a newimage quality assessment model is proposed according to vein characteristics,moreover,vein image can be acquired through self optimization based on assessment result. First,a measure function based on key information entropy is proposed,which measures vein information completeness; Second,another measure function based on Contourlet decomposition is proposed,which is used to judge whether vein directional information is rich or not; Third,the objective vein image quality assessment model without reference is formed by fusing the two measure functions. In final,iteration elimination method is proposed in order to overcome the defect of steepest descent method,which is easy to fall into local optimum during optimization process. Experiments showthe proposed quality assessment model is controllable and can meet the characteristics of human visual system,in the meantime the number of iterations can be reduced effectively through the proposed iteration elimination method,and the real-time requirement of acquisition system can be ensured.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第2期236-241,共6页 Acta Electronica Sinica
基金 辽宁省教育厅一般项目(No.L2013241) 国家自然科学基金(No.61272214)
关键词 静脉采集 质量评价 最速下降法 轮廓波分解 vein acquisition quality assessment steepest descent method contourlet decomposition
  • 相关文献

参考文献3

二级参考文献40

  • 1陈桂友,孙同景,雷印胜.一种基于自适应滤波的指纹图像增强算法[J].电子测量与仪器学报,2006,20(6):76-80. 被引量:12
  • 2JAIN A K, ROSS A, PRABHAKAR S. An introduction to biometric recognition [J].IEEE Trans. Circuits and Systems for Video Tech, 2004,14:4-20.
  • 3OGORMAN L. Comparing passwords, tokens, and Biometrics for user authentication [C]. Proceedings of the IEEE, 2003,91 (12) :2019-2040.
  • 4WANG K J, ZHANG Y. Hand vein recognition based on multi supplemental features of multi-classifier fusion decision [ C ]. Proceedings of the 2006 IEEE, 2006: 1790-1795.
  • 5PARK G, SANG K I M, CHOI H. A person identification algorithm utilizing hand vein pattern [ C ]. Korea Signal Processing Conference, 1997,10( 1 ) :1107-1110.
  • 6TOSHIYUKI T, NAOHIKO K. Biometric authentication by hand vein patterns [ C ]. Sice Annual Conference in Sapporo, 2004:249-253.
  • 7BADAWI A M. Hand vein biometric verification prototype : A testing performance and patterns similarity [ C ] . IPCV, 2006,14 : 3-9.
  • 8CROSS J M, SMITH C L. Thermographic imaging of the subcutaneous vascular network of the back of the hand for biometric identification[ C]. Proceedings of 29th International Carnahan Conference on Security Technology, 1995:20-35.
  • 9SHAHIN M, BADAWI A, KAMEL M. Biometric authentication using fast correlation of near infrared hand vein patterns [J]. International Journal of Biomedical Science, 2007,2 ( 3 ) : 141-148.
  • 10WANG K J, ZHANG Y, YUAN ZH, et al. Hand vein recognition based on multi-supplemental features of multiclassifier fusion decision [ C ]. The 2006 IEEE International Conference on Mechatronics and Automation, 2006 : 1790-1795.

共引文献34

同被引文献32

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部