期刊文献+

6066Al/SiC_p复合材料的组织特征与阻尼性能 被引量:4

Microstructure characteristic and damping properties of 6066Al/SiC_p composites
在线阅读 下载PDF
导出
摘要 研究了经制粉→混料→真空抽气→热挤压工艺制备的 6 0 6 6Al SiCp 复合材料的组织特征与阻尼性能 .复合材料的阻尼特征通过动态机械热分析仪 (DMTA)测量 ,得出了 2种不同SiC含量的 6 0 6 6Al SiCp 复合材料及 6 0 6 6Al合金在温度为 30~ 2 5 0℃ ,频率为 0 .1,1,10和 30Hz时的阻尼值 .利用扫描电镜、光学显微镜对复合材料组织特征进行了分析 ,根据组织特征及阻尼数据对复合材料的阻尼机制进行了讨论 .结果表明 :将 2~ 3μm的SiC颗粒加入6 0 6 6Al中 ,当SiC含量为 7% (体积分数 )时 ,增强的SiC颗粒分布较均匀 ,与基体结合良好 ;当SiC含量为 12 %时 ,SiC易聚集成团 .少量SiC能明显提高 6 0 6 6Al的阻尼能力 ,尤其是高温阻尼性能 ;6 0 6 6Al SiCp 复合材料的高阻尼性能主要是SiC颗粒加入后使位错密度大大增加 ,基体晶界及基体与SiC颗粒界面的存在使材料在循环载荷下消耗能量所致 . Microstructure characteristic and damping properties of the 6066Al/SiC p composites produced by spray powder→blending→canning+degassing→hot pressing process were studied. The damping capacity 6066Al base alloy and the 6066Al/SiC p composites, with two different volume fractions of reinforcements, were measured at frequencies of 0.1, 1, 10 and 30 Hz over in the 30 to 250 ℃ temperature range by a dynamic mechanical thermal analyzer (DMTA). The microstructural analysis was performed using scanning electron microscopy, optical microscopy. It was shown that 2~3 μm SiC particulates gathered easily when the volume fraction of SiC reinforcing particulates present in the MMCs was up to 12%. The damping capacity of 6066Al could be significantly improved by the addition of 7% SiC particulates. Finally, the operative damping mechanisms were discussed in light of characterization of microstructure and the data of damping capacity.
出处 《中南工业大学学报》 CSCD 北大核心 2001年第5期511-514,共4页 Journal of Central South University of Technology(Natural Science)
基金 国家"九五"科技军工配套项目 (中色科技 ( 2 0 0 0 ) 0 0 16 )
关键词 复合材料 铝合金 碳化硅 阻尼能力 composites Al alloy silicon carbide damping capacity
  • 相关文献

参考文献1

二级参考文献7

共引文献3

同被引文献43

  • 1李晓军,柴东朗,郗雨林.SiC_p增强镁基复合材料微区应力场的仿真模拟[J].金属学报,2004,40(9):927-929. 被引量:11
  • 2沈伟,彭德全,沈晓丹.Al_2O_3陶瓷表面金属化[J].材料保护,2005,38(3):9-11. 被引量:12
  • 3赵稼祥.加强发展军用功能材料[J].材料工程,1995,23(3):3-11. 被引量:25
  • 4[1]Evans A G.Perspective on the development of high toughness ceramics[J].J.Am.Ceram.Soc.,1990,73(2):187-206.
  • 5[2]Naslain R.Processing of ceramic matrix composites[J].J.Key.Eng.Mater.,1998,164-165:3-8.
  • 6[3]Prewo K M.Fiber reinforced ceramics:new opportunities for composite materials[J].J.Am.Ceram.Soc.Bull.,1989,68(2):395-400.
  • 7[4]Mazdiyasn K S.Fiber reinforced ceramic composites materials[M].Processing and Technology,Noyes Publications,Park Ridge,New Jersey,USA,1990:168.
  • 8[5]Jamet J F,et al.Composite thermostructures:an overview of the french experience[C]// Naslain R et al.High temperature ceramic matrix composites.Bordeaux:Woodhead,1993:215.
  • 9[8]Sato S,et al.Temperature dependence of internal friction and elastic modulus of SiC/SiC composites[J].J.Alloy and Compounds,2003,355:142-147.
  • 10[10]Nishiyama K,et al.High-temperature dependence of the internal friction and modulus change of tetragonal ZrO2,Si3N4 and SiC[J].J.Mater Sci Lett.,1990,9:528.

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部