期刊文献+

面向军用网格的广域分布式数据处理框架 被引量:7

Wide Area Distributed Data Processing Framework for Military Grid
在线阅读 下载PDF
导出
摘要 在军事应用场景下,各部队日常积累的海量数据具有部署分散、区域跨度大等特点,通过将跨域的原始数据汇总后再分析的方式面临着计算效率低、带宽压力大的挑战。本文在借鉴Hadoop、Spark等分布式计算框架的基础上,结合网格计算的思想提出了一种适用于军用网格环境的广域分布式数据处理框架,能够将各部队中分布松散的数据、计算资源聚合起来构成一个大规模计算系统,以提供在跨军网广域范围内的大数据分析处理能力。同时,模拟军事应用场景设计了仿真实验,实验结果证实本框架相对于传统计算方式在计算效率上有显著提高。 In military scene,the daily mass data accumulated by troops are characterized by dispersed deployment and large regional span. In order to collect original data from cross domain and analysis the big data,we are facing the challenges of low computational efficiency and high bandwidth pressure.Based on distributed computing,this paper proposed a wide area distributed data processing framework for military grid,which can aggregate distributed loose data resources and computing resources to form a large-scale computing system. It provides big data analysis and processing capabilities across the wide area of the military network. According to typical military application scenario,a simulation experiment is designed. The experiment results show that the efficiency of the framework is higher than that of traditional computing method.
作者 张智 江果 蒋鸣远 ZHANG Zhi;JIANG Guo;JIANG Ming-yuan(The 29th Research Institute of CETC,Chengdu 610036,China)
出处 《中国电子科学研究院学报》 北大核心 2019年第1期20-25,共6页 Journal of China Academy of Electronics and Information Technology
关键词 分布式计算 网格计算 广域 军用 任务调度 Distribute computing Grid Computing Wide Area Military Task scheduling
  • 相关文献

参考文献5

二级参考文献57

  • 1张新征,李海鹰.“大数据”对美陆军信息系统建设的影响[J].轻兵器,2012(19):10-12. 被引量:8
  • 2陈明奇,姜禾,张娟,廖方宇.大数据时代的美国信息网络安全新战略分析[C].第27次全国计算机安全学术交流论文集,2012,(8):42-45.
  • 3Bill Franks.驾驭大数据[M].黄海,车皓阳,王悦,等,译.北京:人民邮电出版社,2013.
  • 4Honig U,Schiffmann W.A meta algorithm for scheduling multiple DAGs in homogeneous system environments//Proceedings of the IEEE 18th IASTED International Conference on Parallel and Distributed Computing and System.Dallas,USA,2006:147-152.
  • 5Henan Z,Sakellariou R.Scheduling multiple DAGs onto heterogeneous systems//Proceedings of the IEEE International Symposium on Parallel and Distributed Processing (IPDPS 2006).Rhodes Island,Greece,2006:159-159.
  • 6Yu Zhi-Feng,Shi Wei-Song.A planner-guided scheduling strategy for multiple workflow applications//Proceedings of the Parallel Processing Workshops (ICPPW 2008).Portland,USA,2008:1-8.
  • 7Arabnejad H,Barbosa J.Fairness resource sharing for dynamic workflow scheduling on Heterogeneous Systems//Proceedings of the 10th IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA 2012).Leganes,Spain,2012:633-639.
  • 8Bittencourt L F,Madeira E R M.Towards the scheduling of multiple workflows on computational grids.Journal of Grid Computing,2009,8(3):419-441.
  • 9Jiang He-Jhan,Huang Kuo-Chan,Chang Hsi-Ya,et al.Scheduling concurrent workflows in HPC Cloud through exploiting schedule gaps.Lecture Notes in Computer Science,Algorithms and Architectures for Parallel Processing.Melbourne,Australia,2011:282-293.
  • 10N'takpe T,Suter F.Concurrent scheduling of parallel task graphs on multi-clusters using constrained resource allocations//Proceedings of the IEEE International Symposium on Parallel and Distributed Processing(IPDPS 2009).Rome,Italy,2009:1-8.

共引文献114

同被引文献64

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部