摘要
相对熵密度的极限性质是信息论的一个重要问题。本文在文[2]的基础上探讨几何分布相对熵密度偏差的极限性质,获得二个几何分布的相对熵密度的强偏差定理。
Limit deviation of relative entropy density is an important problem in Informationtheory. Based on the resu1ts given in [2], limit property of the deviation of the relative entropy densityof geometrica1 distribution is discussed in this paper. And two strong deviation theorems for the relativeentropy density of geometrical distribution are derived.
出处
《聊城师院学报(自然科学版)》
2001年第3期26-27,30,共3页
Journal of Liaocheng Teachers University(Natural Science Edition)
关键词
几何分布
强大数定律
几乎处处收敛
相对熵密度偏差
极限性质
geometrical distribution, strong law of large numbers, converge almost everywhere,deviation of entropy density