期刊文献+

基于布尔矩阵的高价值度关联规则挖掘算法 被引量:2

High-value Degree Association Rules Mining Algorithm Based on Booleanmatrix
在线阅读 下载PDF
导出
摘要 传统的挖掘算法Apriori是依据统计学中的数据显著性挖掘关联规则,需多次扫描数据库,效率较低,且忽视了数据显著性与价值性不匹配的问题。针对"大数据"下容易产生数量繁多但无效的关联规则,通过采用基于布尔矩阵挖掘关联规则的算法,只扫描一次数据库,得出布尔矩阵及相应的利润矩阵,随后根据"二八法则"设定对客户最具吸引力的"最小价值度",最终挖掘出高价值的关联规则,从而提高规则挖掘的效率及价值。 The traditional association rules mining algorithm Apriori is based on the significant mining association rules in statistics. The algorithm is Inefficient because it needs to repeatedly scan the database. And it also neglects the problem that the significance of data does not match the value. Oppositely it is easy to produce excessive but Invalid association rules. The paper uses the algorithm based on hooleanmatrix to mining association rules. This algorithm draws the bool- eanmatrix and the corresponding profit matrix by scanning the database only once. Then, it sets the most attractive minimal degree for the client based on the Pareto rule. At last, it mines the high - value degree association rules and improves effi- ciency and value.
机构地区 暨南大学
出处 《科技管理研究》 CSSCI 北大核心 2014年第6期188-191,共4页 Science and Technology Management Research
关键词 关联规则 布尔矩阵 规则相关项布尔矩阵 平均利润矩阵 最小价值度 association rules booleanmatrix booleanmatrix related with the items of the rules average profit matrix minimal degree
  • 相关文献

参考文献13

二级参考文献73

共引文献144

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部