期刊文献+

稀疏矩阵的关联规则挖掘算法研究

Association Rule Mining Algorithms of Rare Matrix
在线阅读 下载PDF
导出
摘要 关联规则是数据挖掘中的一种重要模式,自1993年R.Agrawal引入关联规则概念和提出第一个关联规则算法以来,诸多研究人员对关联规则挖掘的算法进行了广泛的研究.但专门研究挖掘稀疏数据的有效算法较少.针对稀疏数据,提出了一个使用简单数据结构——链表的挖掘算法,与其它算法比较,实验结果表明是非常有效的. Association Rule is an important model in data mining. Since R. A Grawal derived the concept of association rule and proposed the first association rule mining algorithm in 1973, a lot of researchers have researched broadly on association rule mining algorithms. But the efficient algorithm aimed at rare data is scarce. So this paper proposes an algorithm on the rare data which uses a simple data structure link. The experiment result shows that it is very efficient compared with other algorithms.
出处 《湖南工程学院学报(自然科学版)》 2007年第1期49-51,共3页 Journal of Hunan Institute of Engineering(Natural Science Edition)
关键词 关联规则 频繁项目集 链表 稀疏矩阵 association rule, frequent itemset,link, rare matrix.
  • 相关文献

参考文献6

二级参考文献50

  • 1李清峰,杨路明,张晓峰,龙艳军.数据挖掘中关联规则的一种高效Apriori算法[J].计算机应用与软件,2004,21(12):84-86. 被引量:29
  • 2[1]J Han,Micheline Kamber. Data Mining:Concepts and Techniques[M].Morgan Kaufmann Publishers,2001
  • 3[2]R Agrawal,R Srikant. Fast algorithms for mining association rules[C].In: VLDB ′94,1994: 487~499
  • 4[3]R Agrawal ,T Imielinski ,A Swami. Mining association rules between sets of items in large databases[C].In:Proc 1993 ACM-SIGMOD Int Conf Management of Data (SIGMOD′93), Washington, DC, 1993-05:207~216
  • 5[4]J S Park ,M S Chen,P S Yu. An effective hash-based algorithm for mining association rules[C].In:SIGMOD'95,1995:175~186
  • 6[5]J Han,J Pei,Y Yin. Mining frequent patterns without candidate generation[C].In: Proc ACM SIGMOD, 2000:1~12
  • 7[6]C A Shaffer. Data Structures and Algorithm Analysis[M].Prentice Hall,1997
  • 8Lu H J,IEEE Trans Knowledge Data Engineering,1996年,8卷,6期,957页
  • 9Burdick D,Calimlim M,Gehrke J.MAFIA: A maximal frequent itemset algorithm for transactional databases [Z].Int'l Conf. on Data Engineering.2001.
  • 10Gouda K,Zaki M J.Efficiently mining maximal frequent itemsets [Z].In IEEE International Conference on Data Mining.San Jose:2001.

共引文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部