期刊文献+

基于多Agent技术的飞机协同飞行建模与仿真 被引量:6

Modeling and simulation of collaborative flight based on multi-agent technique
原文传递
导出
摘要 应用多Agent建模与仿真技术,研究了飞机Agent在空中走廊中的飞行风险。根据空中走廊内飞机Agent的飞行目标、主要功能和内部结构,分析了飞机Agent的推理规则和协同状态,提出了协同飞行的交互结构,利用混合式仿真方法进行仿真试验。仿真结果表明:当大型飞机的最大、最小巡航速度分别为880、620km·h-1,中型飞机的最大、最小巡航速度分别为790、525km·h-1,且2种机型加速度的最大值、最小值均分别为0.608、-0.780m·s-2时,空中走廊中飞机的飞行状态可以划分为4种典型工况;第1种工况下,飞机的速度始终为745.17km·h-1,总飞行时间为708s;第2种工况下,飞机根据前方飞机调整自身飞行速度,飞机初始速度为658km·h-1,最大速度为778km·h-1,总飞行时间为648s;第3种工况下,飞机为避免飞行冲突变更空中走廊中的飞行线路,总飞行时间为744s;第4种工况下,飞机因安全问题脱离空中走廊,总飞行时间为66s。提出的模型可满足实际要求。 The flight risk of aircraft agent [lying in air corridor was studied by using multi-agent modeling and simulation technique. According to the flight aim, main function and interior structure of aircraft agent in air corridor, the inference rule and collaborative state were analyzed, the interactive structure of collaborative flight was put out, and simulation experiment was carried out by using hybrid simulation method. Simulation result shows that when the maximum and minimum cruising speeds of large-sized aircraft are 880, 620 km·h^-1 respectively, the maximum and minimum cruising speeds of medium-sized aircraft are 790, 525km·h^-1 respectively, and the maximum and minimum accelerations of the two aircrafts are 0. 608 and -0. 780 m · s^-2 , the aircraft flight state in air corridor can be divided into four typical conditions. Under condition 1, aircraft speed is always 745.17 km·h^-1 , and the total flight time is 708 s. Under condition 2, aircraft adjusts its speed according to the leading aircraft, the initial and maximum speeds are 658, 778 km·h^-1, and the total flight time is 648 s. Under condition 3, aircraft changes its flight line in air corridor in order to avoid flight conflict, and the total flight time is 744 s. Under condition 4, aircraft breaks away from air corridor for safety problem, and the total flight time is 66 s. The proposed model can meet the actual requirement. 1 tab, 19 figs, 24 refs.
出处 《交通运输工程学报》 EI CSCD 北大核心 2013年第6期90-98,共9页 Journal of Traffic and Transportation Engineering
基金 国家自然科学基金项目(61104159)
关键词 航空运输 协同飞行 建模与仿真 多AGENT技术 空中走廊 air transportation collaborative flight modeling and simulation mulit-agent technique air corridor
  • 相关文献

参考文献23

  • 1Joint Planning and Development Office. Concept of operations for the next generation air transportation system[R].Washington DC:Federal Aviation Administration,2007.
  • 2ALIPIO J,CASTRO P,KAING H. Dynamic airspace super sectors(DASS)as high-density highways in the sky for a new US air traffic management system[A].New York:IEEE,2003.57-66.
  • 3YOUSEFI A,DONOHUE G. High-volume tube-shape sec-tors(HTS):a network of high capacity ribbons connecting congested city pairs[A].New York:IEEE,2004.12-21.
  • 4SRIDHAR B,GRABBE S,SHETH K. Initial study of tube networks for flexible airspace utilization[A].Washington DC:AIAA,2006.237-252.
  • 5HOFFMAN R,PRETE J. Principles of airspace tube design for dynamic airspace configuration[A].Anchorage:AIAA,2008.108-139.
  • 6XUE Min,KOPARDEKAR P. High-capacity tube network design using the hough transform[J].{H}Journal of Guidance Control and Dynamics,2009,(03):788-795.
  • 7XUE Min,ZELINSKI S J. Complexity analysis of traffic in corridors-in-the-sky[A].Fort Worth:AIAA,2000.110-122.
  • 8HEXMOOR H,HENG T. Air traffic control agents:landing and collision avoidance[A].Las Vegas:AIAA,2000.21-35.
  • 9NITSCHKE G. Cooperating air traffic control agents[J].{H}APPLIED ARTIFICIAL INTELLIGENCE,2001,(02):209-235.
  • 10CALLANTINE T J. CATS-based air traffic control er agents[R].Sacramento:NASA Ames Research Center,2002.

二级参考文献28

共引文献33

同被引文献31

  • 1朱代武.低空空域飞行冲突避让算法[J].交通运输工程学报,2005,5(3):73-76. 被引量:22
  • 2王鹏,李伯虎,柴旭东,邸彦强.复杂产品多学科虚拟样机顶层建模语言研究[J].计算机集成制造系统,2006,12(10):1605-1611. 被引量:9
  • 3黎新华,张兆宁.基于Agent的空中交通流量管理系统结构研究[J].交通运输工程与信息学报,2007,5(1):56-61. 被引量:14
  • 4Wang Q,Li W L,Zhang L H, et al. The Design of Asynchronous Motor Performance Testing System Based on theMSP430f47187[J]. Advances in Intelligent Systems and Computing, 2013,212 : 195-200.
  • 5Lozano F,Gomez G, Aguayo-Torres M,et al. Network Performance Testing System Integrating Models for AutomaticQoE Evaluation of Popular Services: YouTube and Facebook[J]. Wireless Personal Communications, 2015, 81 (4):1377-1397.
  • 6Rodriguez F T, Reina M, Baptista F, et al. Evaluation of Novel Approaches to Software Engineering : AutomatedGeneration of Performance Test Cases from Functional Tests for Web Applications [J]. Communications in Computerand Information Science,2013,417:164-173.
  • 7Kim G H,Kim Y G,Chung K Y. Towards Virtualized and Automated Software Performance Test Architecture[J].Multimedia Tools and Applications ,2013(6) : 8745-8759.
  • 8Seresht N A* Azmi R. MAIS-IDS: A Distributed Intrusion Detection System Using Multi-agent AIS Approach [J].Engineering Applications of Artificial Intelligence, 2014,35 : 286-298.
  • 9Palmieri F, Buonanno L,Venticinque S* et al. A Distributed Scheduling Framework Based on Selfish AutonomousAgents for Federated Cloud Environments[J]. Future Generation Computer Systems,2013,29(6) :1461-1472.
  • 10Adhau S,Mittal M L, Mittal A. A Multi-agent System for Distributed Multi-project Scheduling: an Auction-basedNegotiation Approach[J], Engineering Applications of Artificial Intelligence,2012,25(8) : 1738-1751.

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部