期刊文献+

基于结构张量的变分多源图像融合 被引量:3

Variational multi-source image fusion based on the structure tensor
原文传递
导出
摘要 提出了可以保持源图像特征和细节信息的基于结构张量的变分多源图像融合算法.首先叙述基于结构张量的融合梯度场,然后测量每幅源图像的特征图,根据特征图为源图像的每个梯度构造一个权值,将携带明显特征的梯度在融合的梯度场中凸显出来,从而使源图像的特征和细节得到保持,最后应用变分偏微分方程理论从目标梯度场重建出融合的图像.实验结果表明,本文算法融合图像的灰度平均梯度和信息熵均高于小波变换算法、塔分解法和直接梯度融合算法,视觉效果上,融合图像很好的保留了源图像的特征和细节,为图像目标检测和识别提供了高质量的图像信息. This article describes the variational multi-source image fusion using the structure tensor algorithm, which can keep the image features and details very well. We first narrative the fusion gradient field based on structure tensor, then measure the characteristic graphs of each source image, and thus construct a weight value for the source image gradient according to the characteristic graph. Gradients with high image features are highlighted in the fusion gradient field, and thus image features in the sources are well preserved. By using variational partial differential equation, the fusion image is reconstructed from the target gradient field. From the actual experimental results, the average gradient value and entropy of the fused image are found to be higher than those obtained by using the wavelet transform algorithm, tower decomposition algorithm, and direct gradient fusion algorithm, and the visual effect of the fusion image is good enough to retain the feature of source images and details in it. Therefore, it can give qualified image information for target detection and identification.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第21期156-162,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:05891JM50)资助的课题~~
关键词 图像融合 梯度场 结构张量 变分法 image fusion, gradient field, structure tensor, variational method
  • 相关文献

参考文献4

二级参考文献44

共引文献66

同被引文献23

  • 1WANG Chao,YE Zhong-Fu.Perceptual Contrast-Based Image Fusion: A Variational Approach[J].自动化学报,2007,33(2):132-137. 被引量:6
  • 2LI S T, KANG X D, HU J W. Image fusion with guided filtering [ J]. IEEE Transcations on Image Processing, 2013,22 ( 7 ) : 2864 - 2865.
  • 3PIELLA G. Image fusion for enhanced visualization: a variational approach [ J ]. International Journal of Computer Vision Vis, 2009, 83(1) :1 -11.
  • 4KUMMAR M, DASS S. A total variational based algorithm for pix- el-level image fusion[ J]. IEEE Transactions on Image Processing, 2009,18(9) :2137 -2143.
  • 5RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [ J ]. Physica D Nonlinear Phenomena, 1992,60( 1 ) :259 -268.
  • 6ZHANG J F, SMITH J S, WU J S, et al. Morphological undecimat- ed wavelet decomposition for fault location on power transmission lines [ J ]. IEEE Transactions on Circuits and Systems, 2006, 53(6) :1395 - 1402.
  • 7ZHANG W B, SHEN L, LI J S. Morphological undecimated wave- let decomposition for fauh feature extraction of rolling element bearing[ C ]//CISP'09 2nd International Congress on Image and Signal Processing,2009 : 1 - 5.
  • 8XYDEAS C S,PETROVIC V. Objective image fusion performance measure [ J ]. Electronics Letters,2000,36 (4) : 308 - 309.
  • 9ZHOU W, BOVIK A C B, SHEIKH H R, et al, Image quality as- sessment :from error visibility to structural similarity [ J ]. IEEE Transcations on Image Processing,2004,13 (4) :1 -14.
  • 10LUO X Y, ZHANG J, DAI Q H. Saliency-based geometry meas- urement for image fusion performance [ J ]. Instrumentation and Measurement, IEEE Transactions,2012,61 (4) : 1130 - 1132.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部