期刊文献+

基于模糊熵的低剂量CT投影降噪算法研究 被引量:11

Noise Reduction for Low-dose CT Sinogram Based on Fuzzy Entropy
在线阅读 下载PDF
导出
摘要 低剂量CT(Computed Tomography)因其大大降低了辐射剂量而广泛用于现代医疗中。然而,随着辐射剂量的减少,扫描过程中投影数据受到随机噪声的污染,导致重建图像中存在明显的条形伪影。为解决上述问题,该文提出一种基于局部模糊熵的自适应恢复算法。该算法在基于统计信息的各向异性滤波器的基础上,利用局部模糊熵来判断边缘和平滑区域。新的扩散模型能有效地控制扩散程度,大大提高了扩散速度,达到快速恢复投影数据的目的。仿真实验和实际数据试验结果表明,基于局部模糊熵的自适应恢复方法能够得到高信噪比的重建图像,且与传统算法相比,缩短了对投影数据的处理时间,从而减轻了辐射对患者的危害。 Low-dose Computed Tomography (CT) is widely used in modern medical practice for its advantage on reducing the radiation dose to patients. However, excessive quantum noise is present in low dose X-ray imaging along with the decrease of the radiation dose; thus, there are obvious streak-like artifacts in reconstructed images. For this problem, an adaptive restoration algorithm based on local fuzzy entropy is proposed in this paper. This new algorithm modifies the statistical information based anisotropic filter, distinguishing edges and smooth areas by a local fuzzy entropy. The new diffusion model can effectively control the diffusion degree, thus improve greatly the diffusion rate to achieve the purpose of rapid recovery of the projection data, Simulation results show that higher signal-to-noise ratio reconstructed images can be obtained by the new adaptive diffusion algorithm. In addition, compared with conventional algorithm, the proposed algorithm shortens processing time in projection domain and thereby reduces the hazards of radiation to patients.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第6期1421-1427,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61071192 61271357) 山西省自然科学基金(2009011020-2) 山西省省研究生优秀创新项目(20123098) 山西省高等学校优秀青年学术带头人支持计划资助课题
关键词 低剂量CT 各向异性扩散滤波器 局部模糊熵 Low-dose CT Anisotropic diffusion filter Local fuzzy entropy
  • 相关文献

参考文献8

二级参考文献74

  • 1王彦臣,李树杰,黄廉卿.基于多尺度Retinex的数字X光图像增强方法研究[J].光学精密工程,2006,14(1):70-76. 被引量:47
  • 2王建勇,周晓光,廖启征.一种基于中值-模糊技术的混合噪声滤波器[J].电子与信息学报,2006,28(5):901-904. 被引量:22
  • 3Haker S, Sapiro C, and Tannenbaum A. Knowledge-based segmentation of sar data with learned priors. IEEE Transactions on Image Processing, 2000, 9(2): 299-301.
  • 4Papson S and Narayanan R. Modeling of target shadows for SAR image classification. 35th IEEE Applied imagery and pattern recognition workshop . Washington, 2006: 3-3.
  • 5Wen Xian-bin and Tian Zheng. Mixture multiscale autoregressive modeling of SAR imagery for segmentation. Electronics Letters, 2003, 39(17): 1272-1274.
  • 6Gaetano R, Scarpa G, and Poggi G. Hierarchical texture-based segmentation of multiresolution remotesensing images. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 2129-2141.
  • 7Weisenseel R, Clem Karl W, and Castanon D, et al.. Markov random field segmentation methods for SAR target chips. Proc. SPIE, Oriando, 1999, Vol.3721: 462-473.
  • 8Perona P and Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639.
  • 9Teo P, Sapiro G, and Wandell B. Anisotropic diffusion of posterior probabilities. IEEE Int. Conf. Image Processing, Santa Barbara, CA, 1997: 675-678.
  • 10Boccignone G, Ferraro M, and Napoletano P. Diffused expectation maximization for image segmentation. Electronics Letters, 2004, 40(18): 1107-1108.

共引文献110

同被引文献82

  • 1韩慧,王文渊,毛炳寰.不均衡数据集中基于Adaboost的过抽样算法[J].计算机工程,2007,33(10):207-209. 被引量:13
  • 2李仲宁,罗志增.基于小波变换的空域相关法在肌电信号中的应用[J].电子学报,2007,35(7):1414-1418. 被引量:31
  • 3Quan Zhang<!-- Please confirm that given names and surnames have been identified correctly. -->,Zhiguo Gui,Yang Chen,Yuanjin Li,Limin Luo.Bayesian sinogram smoothing with an anisotropic diffusion weighted prior for low-dose X-ray computed tomography[J].Optik - International Journal for Light and Electron Optics.2013(17)
  • 4Zhi-guo Gui,Yi Liu.Noise reduction for low-dose X-ray computed tomography with fuzzy filter[J].Optik - International Journal for Light and Electron Optics.2011(13)
  • 5Shin-Min Chao,Du-Ming Tsai.An improved anisotropic diffusion model for detail- and edge-preserving smoothing[J].Pattern Recognition Letters.2010(13)
  • 6Yang Chen,Dazhi Gao,Cong Nie,Limin Luo,Wufan Chen,Xindao Yin,Yazhong Lin.Bayesian statistical reconstruction for low-dose X-ray computed tomography using an adaptive-weighting nonlocal prior[J].Computerized Medical Imaging and Graphics.2008(7)
  • 7Wang J, Li T F, Lu H B, et al. Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography[J]. IEEE Transactions on medical imaging, 2006, 25(10): 1272-1283.
  • 8Wang Jing, Lu Hongbing. Multiscale penalized weigh- ted least-squares sonogram restoration for low-dose X- ray computed tomography[J]. IEEE Transactions on Biomedical Engineering, 2008, 55(3): 1022-1032.
  • 9Zhang Q, Gui Z G, Chen Y, et al. Bayesian sinogram smoothing with an anisotropic diffusion weighted prior for low-dose X-ray computed tomography[J]. Optik - International Journal for Light and Electron Optics, 2013, 124(17): 2811-2816.
  • 10Rust G F, Aurich V , Reiser M. Noise dose reduction and image improvements in screening virtual colonoscopy with tube currents of 20 mAs with nonlinear Gaussian filter chains [C]. Medical Imaging 2002 Conference. New York.. IEEE, 2002: 186-197.

引证文献11

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部