期刊文献+

解决多目标优化问题的差分进化算法研究进展(英文) 被引量:17

Differential evolution for solving multi-objective optimization problems: a survey of the state-of-the-art
在线阅读 下载PDF
导出
摘要 差分进化(differential evolution,DE)是一种简单但功能强大的进化优化算法.由于其优秀的性能,其诞生之日起就吸引了各国研究人员的关注.作为一种基于群体的全局性启发式搜索算法,差分进化算法在科学和工程中有许多成功的应用.本文对解决多目标优化问题的差分进化算法研究进行了综述,对差分进化的基本概念进行了详细的描述,给出了几种解决多目标优化问题的差分进化算法变体,并且给出了差分进化算法解决多目标优化问题的理论分析,最后,给出了差分进化算法解决多目标优化问题的工程应用,并指出了未来具有挑战性的研究领域. Differential evolution(DE) is a simple but powerful evolutionary optimization algorithm.It has drawn the attention of researchers all round the globe with its perfect performance since its inception.As a global search of metaheuristics based on population,DE has many successful scientific and engineering applications.A survey of DE for solving multi-objective optimization problems(MOPs) is presented.A detailed review of the basic concepts of DE is provided.Several important variants of DE for solving MOPs are presented.Moreover,the theoretical analyses on DE for solving MOPs are provided.Finally,the engineering applications of DE for solving MOPs and its future challenging field are also pointed out in the remainder of this paper.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2013年第7期922-928,共7页 Control Theory & Applications
基金 supported by the Key Project of Chinese Ministry of Education(No.212135) Guangxi Natural Science Foundation(Nos.2012GXNSFB A053165) the Project of Education Department of Guangxi Autonomous Region(Nos.201203YB131,201202ZD071) Doctoral Initiating Project of Guangxi University of Technology(No.11Z09) the Fundamental Research Funds for the Central Universities(No.20112M0126)
关键词 多目标优化 差分进化 进化算法 启发式 PARETO优化 multiobjective optimization differential evolution evolutionary algorithms metaheuristics Pareto optimality
  • 相关文献

参考文献53

  • 1CASTRO PAD, ZUBEN F J V. Multi-objective Bayesian artificial immune system: empirical evaluation and comparative analyses [J]. Journal of Mathematical Modelling and Algorithms, 2009, 8(2): 151 -173.
  • 2STORN R, PRICE K V. Differential evolution-A simple and efficient adaptive scheme for global optimization over continuous spaces [R). USA: International Computer Science Institute, 1995.
  • 3PRICE K V, STORN R, LANPINEN J. Differential Evolution: A Practical Approach to Global Optimization [M). Berin: Springer, 2005.
  • 4DEB K. Multi-Objective Optimization using Evolutionary Algorithms [M). Chichester: Wiley, 2001.
  • 5GAMPERLE R, MULLER S, KOUMOUTSAKOS P. A parameter study for differential evolution [M]//Advance in Intelligent System, Fuzzy System, Evolutionary Computation. New York: WSEAS Press, 2002.
  • 6WANG Y, CAI Z X, ZHANG Q F. Differential evolution with composite trial vector generation strategies and control parameters [J]. IEEE Transactions on Evolutionary Computation, 2011,15(1): 55- 66.
  • 7HANSEN N, OSTERMEIER A. Completely derandomized selfadaptation in evolution strategies [J]. Evolutionary Computation, 2011,9(2): 159 - 195.
  • 8ROBIC T, FILIPIC B. DEMO: Differential evolution for multiobjective optimization [M]//Lecture Notes in Computer Science. Berlin: Springer, 2005.
  • 9ABBASS H A, SARKER R, NEWTON C. PDE: A Pareto-frontier differential evolution approach for multi-objective optimization problems [C]//Proceedings of the Congress on Evolutionary Computation. Piscataway, NJ: IEEE, 2002: 831 - 836.
  • 10ZITZLER E, THIELE L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach [J]. IEEE Transactions on Evolutionary Computation, 1999,3(4): 257 - 271.

二级参考文献101

共引文献85

同被引文献170

引证文献17

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部