期刊文献+

一种基于Alopex的进化优化算法 被引量:12

An Alopex Based Evolutionary Optimization Algorithm
原文传递
导出
摘要 提出一种基于Alopex的进化算法.该算法在迭代过程中从种群中随机选择两个个体,通过计算两个个体自变量和目标函数值的变化情况确定算法进一步搜索方向的概率,逐步迭代最终收敛到全局最优.该算法具备基本进化算法和Alopex算法的优点,在一定程度上具有梯度下降法和模拟退火算法的优点.通过基准函数的测试和反应动力学参数估计的应用表明,该算法的全局搜索能力有了显著提高,特别是对多峰函数能够有效避免早熟收敛问题. An Alopex based evolutionary algorithm is proposed. Its salient feature is randomly selecting two individuals and computing their objective values. According to the information of the two individuals, the probability of search direction is ascertained. By iterative computing, the global optimum is obtained. It has the advantages of both gradient methods and simulation anneal algorithm to some extent. The anneal temperature is self-adjusting over the proceeding of evolution. The proposed algorithm is used to optimize the benchmark functions and the kinetic parameters of 2-ehlorophenol oxidation in supercritical water. The experimental results demonstrate that the proposed algorithm is superior to the original evolutionary algorithms, especially for the multi-apices function problems.
作者 李绍军
出处 《模式识别与人工智能》 EI CSCD 北大核心 2009年第3期452-456,共5页 Pattern Recognition and Artificial Intelligence
基金 国家863计划资助项目(2007AA04Z171)
关键词 进化算法 模拟退火 函数优化 Evolutionary Algorithm, Simulated Anneal, Function Optimization
  • 相关文献

参考文献15

  • 1Holland J H. Adaptation in Natural and Artificial Systems. Ann Arbor, USA: University of Michigan Press, 1975.
  • 2Kennedy J, Eberhart R. Particle Swarm Optimization//Proc of the IEEE International Conference on Neural Networks. Perth, Australia, 1995:1942-1948.
  • 3Storn R. Differential Evolution Design of an IIR Filter//Proc of the IEEE International Conference on Evolutionary Computation. Nagoya, Japan, 1996 : 268 -273.
  • 4Elbehagi E, Hegazy T, Grierson D. Comparison among Five Evolutionary-Based Optimization Algorithm. Advanced Engineering Informatics, 2005, 19(1 ): 43-53.
  • 5刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:294
  • 6倪庆剑,邢汉承,张志政,王蓁蓁,文巨峰.粒子群优化算法研究进展[J].模式识别与人工智能,2007,20(3):349-357. 被引量:70
  • 7吴玫,陆金桂.遗传算法的研究进展综述[J].机床与液压,2008,36(3):176-179. 被引量:29
  • 8Coello C A C. Theoretical and Numerical Constraint-Handling Techniques Used with Evolutionary Algorithms: A Survey of the State of the Art. Computer Methods in Applied Mechanics and Engineering, 2002, 191(11/12) : 1245 -1287.
  • 9Bia A. Alopex-B: A New, Simpler, But Yet Faster Version of the Alopex Training Algorithm. International Journal of Neural Systems, 2001, 11(6) : 497 -507.
  • 10李绍军,王惠,姚平经.求解全局最优化的遗传(GA)-Alopex算法的研究[J].信息与控制,2000,29(4):304-308. 被引量:19

二级参考文献209

共引文献432

同被引文献80

引证文献12

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部