期刊文献+

基于改进差分进化算法的多阈值图像分割 被引量:4

Multi-Threshold Image Segmentation Method Based on Improved Differential Evolution Algorithm
在线阅读 下载PDF
导出
摘要 阈值法是一种简单有效的图像分割技术.但是阈值法也有着明显的缺点,即阈值求解的计算量随阈值的增加而指数级增长.为克服多阈值图像分割计算量大、运算时间长的缺点,引入改进的差分进化算法,提出新的变异策略,采用自适应的缩放因子和交叉系数,并新增扰动策略.改进的算法将多阈值分割模型视为优化问题,将最大类间方差法作为目标函数,实现多阈值分割.实验结果表明,和其它算法相比,该算法不仅可以取得正确的分割结果,而且分割速度更快. The threshold method is a simple and effective image segmentation technique. However, the threshold method also has obvious disadvantage, the amount of calculation for solving threshold appears to be exponential amplification with the increase of threshold. In order to overcome the shortcomings of large computation load and long computation time for multi-threshold image segmentation, we introduce an improved differential evolution algorithm, which proposes a new mutation strategy, adopts self-adaption scaling factor and cross factor, and newly adds Perturbation strategy. In order to achieve multi-threshold segmentation, the improved algorithm considers multi-threshold segmentation as an optimization problem whose objective function is formulated according to Otsu. Experimental results show that compared with other algorithms, the improved algorithm not only can achieve an accurate image segmentation result, but also has a faster speed.
出处 《计算机系统应用》 2016年第12期199-203,共5页 Computer Systems & Applications
基金 福建省科技厅项目(2013J01186 JK2010056) 福建省教育厅项目(JB10160)
关键词 图像分割 多阈值 差分进化算法 最大类间方差 灰度图像 image segmentation multi-threshold differential evolution(DE) Otsu gray image
  • 相关文献

参考文献9

二级参考文献85

  • 1宋翠家,龙建忠,罗代升.基于遗传算法的模糊熵多阈值图像分割[J].仪器仪表学报,2004,25(z1):572-573. 被引量:4
  • 2武燕,张冰.基于改进粒子群算法的多阈值图像分割[J].微型电脑应用,2011(5):59-61. 被引量:4
  • 3颜学峰,余娟,钱锋,丁军委.基于改进差分进化算法的超临界水氧化动力学参数估计[J].华东理工大学学报(自然科学版),2006,32(1):94-97. 被引量:34
  • 4刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:294
  • 5WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[ J]. IEEE Transactions on Evolutionary Computation, 1997, 1 (1) : 67 - 82.
  • 6STORN R, PRICE K. Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous space [ J ]. Technical Report, International Computer Science Institute, Berkley, 1995, ( 18 ) :22 - 25.
  • 7STORN R. Differential evolution design of an IIR- filter [ C ]//IEEE Int Conf on Evolutionary Computation. Nagoy. 1996:268 -173.
  • 8STORN R, PRICE K. Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces [ J ]. Journal of Global Optimization, 1997, 11 (4) :341 - 359.
  • 9VESTERSTROM J, THOMSEN R. A comparative study of differential evolution, particle swam optimization, and evolutionary algorithms on numerical benchmark problems [ C ]//Proceedings of Congress on Evolutionary Computation (CEC204), Poland. 2004.
  • 10STORN R. On the usage of differential evolution for function optimization[ C ]. Biennial conference of the North American fuzzy information processing society, IEEE 1996, 519 - 523.

共引文献181

同被引文献16

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部