期刊文献+

基于特征的制造资源分类方法的研究 被引量:2

Study on the Manufacturing Resource Classify Based on Features
在线阅读 下载PDF
导出
摘要 对制造资源进行有效的分类是建立制造资源模型的前提条件,是虚拟制造的重要组成部分。文章在制造资源的分类过程中,利用设备所能加工的特征作为主要的分组原则,将遗传算法和模糊聚类技术相结合,对制造资源进行基于加工工艺的分组,动态确定聚类数目C和该数目下的最优分类,为今后建立制造资源信息模型进行可制造性评价提供信息支持,减少资源搜索空间,提高加工效率。 The effective classification of manufacturing resources is the premise of the manufacturing re-source modeling and is the important part of virtual manufacturing. In this paper, the hybrid clustering algorithm based on genetic algorithm and genetic Fuzzy C - Means is proposed to cluster the machine tools and the features which the machine tool can processed are regarded as the grouping principle. By this means, the optimum number of optimal cluster and the optimal clusters can be obtained at the same time dynamically. The manufaturing resource clustering can provide information support for the manufac-turing resources modeling and manufacturability evaluation and reduce the searching space of processing equipments.
出处 《组合机床与自动化加工技术》 北大核心 2013年第4期48-50,53,共4页 Modular Machine Tool & Automatic Manufacturing Technique
基金 吉教科合字[2011]第343号
关键词 模糊聚类 制造资源 遗传算法 fuzzy clustering manufacturing resource genetic algorithm
  • 相关文献

参考文献12

  • 1Mariella Consoni, Florenzano Souza, Marco Sacco, Virtual manufacturing as a way for the factory of the future [ J ]. Journal Intelligent Manufacturing, 2006,17 : 1 - 24.
  • 2Kimura F, Product and Process Modeling as a Kernel for Virtual Manufacturing Environment [ J ]. Annals of the CIRP, 1993,42 ( 1 ) : 147 - 150.
  • 3Onosato M, Iwata K, Development of a virtual manufacturing system by integrating product models and factory models [J]. Annals of the CIRP, 1993,42(1):475-478.
  • 4Zhang T, Ramakrishnan R, Livny M, Birch: a new data clustering algorithm and its applications [ J ]. Data Mining and Knowledge Discovery, 1997,1 (2) :141 -182.
  • 5Wu K. L, Yang M. S. Alternative C-meanselustering algo- rithms [ J ]. Pattern recognition, 2002,35:2267 - 2278.
  • 6Zhang D. Q, Chen S. C. A novel kernelized fuzzy C-means algorithm with application in medical image segmentation [ J]. Artificial Intelligence Med., 2004,32:37 - 50.
  • 7Fan J L,Zhen W. Z. Suppressed fuzzy c-means clustering algo- rithm[ J]. Pattern Recognition Lett. ,2003,24 : 1607 - 1612.
  • 8Karayiannis N B. Generalized fuzzy c-means algorithms[ C]. ln:Proc. Of the 5th IEEE Int' 1 Conf. on Fuzzy Systems,2:1036 - 1042, New Orleans :IEEE, 1996.
  • 9Azzag H, Ventrini G, Oliver A, A hierarchical ant based clustering algorithm and its use in three real-world applica- tions[J]. Eur. J. Oper. Res, 2007,197(3):906-922.
  • 10Azzag H, Monmarche N, Slimane M, A clustering algo- rithm based on the ants self-assembly behavior [ C ]. In: Advances in Artificial Life-Proceedings of the 7th European Conference on Artificial Life, Dortmund, Germany, 2003,2801:564 -571.

同被引文献18

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部