期刊文献+

基于改进K均值的运动目标检测算法研究 被引量:3

An Approach Based on Modified K-means for Moving Objects Detection
在线阅读 下载PDF
导出
摘要 背景建模是运动目标检测的关键环节,提出了基于改进K均值背景建模的方法,并进行前景提取.该算法在HSV颜色空间对视频流的前N帧中的每个像素样本进行K均值聚类学习,K均值聚类的结果用来表示该像素的背景模型;接着输入的视频流像素与背景模型比较,进行背景、可能前景和阴影的分离,并提出了一种像素相关的选择性背景更新机制;然后利用TOM(Time OutMap)方法来消除鬼影现象.实验结果表明该算法能够很好地对背景进行建模,较精确地提取出运动目标信息,对光照变化具有较强的鲁棒性. A key issue of detecting moving objects, an approach based on modified K-means to model back- ground is proposed. It learns from the starting N frames with K-means algorithm; and the results learned the background of the pixels. Following, it performs the separation of background pixels, probable foreground pixels and shadow pixels; through the comparison of the input pixels and the background model, a pixel-based selective mechanism of the background update is proposed. Finally, the ghost effects are eliminated by apply- ing the TOM method. The experimental results show that this proposed approach can well model the back- ground, and more accurately extract the moving objects, as well as more robust to the illumination changes.
出处 《三峡大学学报(自然科学版)》 CAS 2012年第6期98-102,共5页 Journal of China Three Gorges University:Natural Sciences
基金 湖北省自然科学基金(2011CDB180)
关键词 K均值聚类 背景减除 运动目标检测 K-means cluster background subtraction moving objects detection
  • 相关文献

参考文献16

  • 1Kim K,Chalidabhongse T H,Hardwood D. Real time Foreground background Segmentation Using Codebook model[J].Real-Time Imaging,2005,(03):172-185.doi:10.1016/j.rti.2004.12.004.
  • 2许雪梅,墨芹,倪兰,郭巧云,李岸.基于局部更新的分层码本目标检测算法[J].计算机应用,2011,31(12):3399-3402. 被引量:3
  • 3P.Kadew Tra,Ku Pong,R.Bowden. An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection[A].2001.149-158.
  • 4黄鑫娟,周洁敏,刘伯扬.自适应混合高斯背景模型的运动目标检测方法[J].计算机应用,2010,30(1):71-74. 被引量:46
  • 5谢勤岚,李圆双,喻该.基于高速球形摄像机的运动目标检测与实时跟踪系统[J].中南民族大学学报(自然科学版),2010,29(2):80-83. 被引量:5
  • 6Brutzer S,Hoferlin B,Heidemann G. Evaluation of Background Subtraction Techniques for Video Surveillance[A].2011.1937-1944.
  • 7Benezeth Y,Jodoin PM,Emile B. Review and E valuation of Commonly-implemented Background Subtraction Algorithm-ms[A].2008.1-4.
  • 8Juan C,SanMiguel,Jose' M. On the Evaluation of Background Subtraction Algorithms Without Ground truth[A].2010.180-187.
  • 9Hanzi Wang,David Suter. Background Subtraction Based on a Robust Consensus Method[A].2006.223-236.
  • 10Olivier Barnich,Marc Van Droogenbroeck. VIBE:A Powerful Random Technique to Estimate the Background in Video Sequences[A].2009.945-948.

二级参考文献68

共引文献77

同被引文献24

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部