期刊文献+

自适应混合高斯背景模型的运动目标检测方法 被引量:46

Moving objects detection approach based on adaptive mixture Gaussian background model
在线阅读 下载PDF
导出
摘要 提出了一种静止摄像机条件下自适应的运动目标检测方法。该方法基于同一像素点被同一灰度车辆覆盖几率小的假设构建初始背景,为每个像素点在线选择高斯分布个数。根据像素点与其邻域像素间存在联系的思想,在线更新学习率。最后用背景差分法检测出运动目标。实验结果表明,同基于传统混合高斯模型的运动目标检测方法相比,该方法有较好的自适应性,能快速适应场景的变化。 An adaptive approach to detect moving objects with a static camera was proposed in this paper. Based on the assumption that the probability of the same pixel covered by the same intensity of the car is the least, the initial background was established and the number of Gaussians for each pixel on-line was chosen. In order to update the Gaussians parameters, the learning rate should be updated on-line according to the relationship between the pixel and its adjacent pixels. Lastly, the moving objects were detected by background subtraction. Compared to the moving objects detection approach based on conventional mixture Gaussian model, this approach has preferable adaptive performance, and can deal with changes in scenes rapidly.
出处 《计算机应用》 CSCD 北大核心 2010年第1期71-74,共4页 journal of Computer Applications
关键词 混合高斯模型 背景更新 背景差分 目标检测 噪声去除 mixture Gaussian model background updating background subtraction objects detection noise removal
  • 相关文献

参考文献9

  • 1CUCCHIARA R, PICCARDI M, PRATI A. Detecting moving objects, ghosts, and shadows in video streams[ EB/OL]. [ 2009 - 05 - 15]. http://www, cs. utsa. edu/-qitian/seminar/Fall04/video/ 01233909. pdf.
  • 2LOB P L, VELASTIN S A. Automatic congestion detection system for underground platforms[ C]// Proceedings of 2001 International Symposium on Intelligent Multimedia Video and Speech Processing. New York: IEEE, 2001:158 - 161.
  • 3RIDDER C, MUNKELT O, KIRCHNER H. Adaptive background estimation and foreground detection using Kalman-fihering [ EB/ OL]. http://serdis, dis. ulpgc. es/-ii-vpc/MatDocerr/notas_practicas/TC_2/ICRAM-95-Ridder-etal_ps.
  • 4WREN C R, AZARBAYEJANI A, DARRELL A, et al. Pfinder: Real-time tracking of the human body [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 780 -785.
  • 5STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking[ EB/OL]. [ 2009 - 04 - 05] http:// www. ai. mit. edu/projects/vsam/Publications/stauffer_ cvpr98 _ track, pdf.
  • 6KAEWTRAKULPONG P , BOWDEN R . An improved adaptive background mixture model for real-time tracking with shadow detection[ EB/OL]. [ 2009 - 05 - 10]. http://personal, ee. surrey, ac. uk/Personal/R. Bowden/publications/avbs01/avbs01. pdf.
  • 7马义德,朱望飞,安世霞,邱会银,汤书森.改进的基于高斯混合模型的运动目标检测方法[J].计算机应用,2007,27(10):2544-2546. 被引量:39
  • 8刘洁,张东来.关于自适应高斯混合背景模型的更新算法的研究[J].微计算机信息,2006(08S):241-242. 被引量:23
  • 9SHENG Zun-bing CUI Xian-yu.An adaptive learning rate GMM for background extraction[J].Optoelectronics Letters,2008,4(6):460-463. 被引量:5

二级参考文献21

  • 1徐君丽,刘冀伟,王志良,郭建波.基于无线网络的智能监控系统设计与实现[J].微计算机信息,2005,21(06S):5-7. 被引量:34
  • 2刘洁,张东来.关于自适应高斯混合背景模型的更新算法的研究[J].微计算机信息,2006(08S):241-242. 被引量:23
  • 3代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:170
  • 4M.Harville, G.Gordon, J.Woodfill. Foreground Segmentation Using Adaptive Mixture Models in Color and Depth. Proc. ICCV Workshop Detection and Recognition of Events in Video. 2001
  • 5M.A.Sato, S.Ishii. Online EM Algorithm for the Normalized Gaussian Network. Neural Computation. 1999, 12:407-432
  • 6GRIMSON W,STAUFFER C,ROMANO R.Using adaptive tracking to classify and monitor activities in a site[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington,DC:IEEE Computer Society,1998:22-31.
  • 7STAUFFER C,GRIMSON W.Adaptive background mixture models for real time tracking[C]// Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.Fort Collins:IEEE Press,1999,2:246-252.
  • 8STAUFFER C,GRIMSON W.Learning patterns of activity using real-time tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747-757.
  • 9KAEWTRAKULPONG P,BOWDEN R.An improved adaptive background mixture model for real-time tracking with shadow detection[C]// The 2nd European Workshop on Advanced Video-based Surveillance Systems.Kingston:Kluwer Academic Publishers,2001:149-158.
  • 10POWER P W,SCHOONEES J A.Understanding background mixture models for foregrounds segmentation[C]// Proceedings of Image and Vision Computing.New Zealand:Auckland,2002:267-271.

共引文献62

同被引文献370

引证文献46

二级引证文献246

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部