期刊文献+

一种新的运动检测及轮廓追踪方法 被引量:11

A Novel Statistical Model for Motion Detection and Contour Tracing
在线阅读 下载PDF
导出
摘要 构建了基于块区域二阶矩比的三帧差分运动检测模型,应用文献[1]中的核密度估计模型来滤除其中的非运动区域,并采用支持向量聚类实现多目标检测。给出了运动物体轮廓快速追踪的RW算法,该算法不必考虑检测区域内部的细节问题,能够充分利用所检测到的边缘信息,比较符合人眼对轮廓的搜索习惯。最后给出了实验结果。 In the first section, according to the assumption that only the silhouette could be extracted to describe the motion of a moving object, a three-frame differencing model is constructed based on the variance ratio of successive blocks of different frames, simultaneously the Gaussian kernel based density estimation model in [1] is used as a filter to suppress false positives, and the SVC algorithm in [10] is also employed to realize real-time multi-object motion detection. A novel contour tracing algorithm, namely the RW (roller wheel) method, is proposed in the next section. Edge information detected by the forgoing model can be fully used by this algorithm, while the interior details will be skipped. This algorithm works in a similar way that human vision system works. Experimental results are given in the end.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2005年第8期723-727,共5页 Geomatics and Information Science of Wuhan University
基金 国家高技术研究发展计划资助项目(863-511-930-009)。
关键词 运动检测 轮廓追踪 时间差分 颜色矩 滚轮算法 motion detection contour tracing temporal differencing color moments roller wheel algorithm
  • 相关文献

参考文献14

  • 1Elgammal A, Duraiswami R, Harwood D,et al. Background and Foreground Modeling Using Non-parametric Kernel Density Estimation for Visual Surveillance.Proceedings of the IEEE, 2002.
  • 2Stauffer C, Grimson W. Adaptive Background Mixture Models for Real-time Tracking. IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999.
  • 3Haritaoglu I, Harwood D, Davis L S. W4: Real-time Surveillance of People and Their Activities. IEEE Trans. on Pattern Anal. Mach. Intell., 2000, 22(8): 809~830.
  • 4Takashi M, Takashi O, Hitoshi H. Background Subtraction for Non-Stationary Scenes. The 4th Asian Conference on Computer Vision, Taipei, 2000.
  • 5Ma Y, Zhang H J. Detecting Motion Object by Spatiotemporal Entropy. IEEE International Conference on Multimedia and Expo. (ICME 2001), Tokyo, 2001.
  • 6Lipton A, Fujiyoshi H, Patil R. Moving Target Classification and Tracking from Real-time Video. IEEE Workshop on Applications of Computer Vision, Princeton,1998.
  • 7Collins R, Lipton A, Fujiyoshi H, et al. A System for Video Surveillance and Monitoring. American Nuclear Society (ANS) Eighth International Topical Meeting on Robotics and Remote Systems, Pittsburgh, PA, Nisan, 1999.
  • 8Barron J, Fleet D, Beauchemin S. Performance of Optical Flow Techniques. International Journal of Computer Vision, 1994, 12 (1): 42~77.
  • 9Stricker M, Orengo M. Similarity of Color Images.SPIE Storage and Retrieval for Image and Video Databases Ⅲ, San Jose, California, 1995.
  • 10Yang J H, Estivill-Castro V, Chalup S K. Support Vector Clustering Through Proximity Graph Modeling. The 9th International Conference on Neural Information Processing (ICONIP02), Singapore, 2002.

同被引文献87

引证文献11

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部