期刊文献+

面向Web服务组合推荐的关联规则研究 被引量:2

Web Service Composition Recommendation Oriented Association Rules
在线阅读 下载PDF
导出
摘要 针对传统的商品营销推荐策略仅限于单个服务,忽视服务之间的关联与集成这一现状,结合Web服务组合理论,运用数据挖掘中的关联规则技术,通过实验挖掘Web服务中用户消费行为,分析并提炼了基于用户行为的Web服务组合关联规则,选择最优化Web服务组合,为用户进行智能推荐,达到了提高Web服务组合服务质量的目的。 The traditional commodity marketing recommendation strategy is limited to single service,ignores the association and integration between services.In response to this situation,the web service composition theory was combines with the association rules technology in data mining;users′ consumer behavior in web service was mined by experiments;web service composition association rules were extracted and analyzed based on users behavior;and the optimal web service composition was chosen.Intelligent recommendations were provided for users to improve the service quality of web service composition.
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2012年第5期588-591,共4页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 国家自然科学基金资助项目(71072077&70972094) 中央高校基本科研业务费专项资金资助项目(2010-II-11) 湖北省自然科学基金资助项目(2009CDB032) 国家科技支撑计划资助项目(2011BAH16B02)
关键词 WEB服务组合 服务推荐 数据挖掘 关联规则 web service composition service recommendation data mining association rules
  • 相关文献

参考文献12

  • 1WANG P, CHAO K M, LO C C. On optimal decision for QoS - aware composite service selection [ J ]. Expert Systems with Applications,2010 ( 37 ) :440 - 449.
  • 2邓水光,吴朝晖.Web服务组合方法综述[J].中国科技论文在线,2008,3(2):79-84. 被引量:14
  • 3JEONG B, CHO H, CHOONGHYUN L. On the func- tional quality of service (FQoS) to discover and com- pose interoperable web services [ J ]. Expert Systems with Applications, 2009 ( 36 ) :5411 - 5418.
  • 4JONG M K, CHANG 0 K, ICK H K. Quality - of - service oriented web service composition algorithm and planning architecture [ J ]. The Journal of Systems and Software ,2008 ( 81 ) :2079 - 2090.
  • 5LIU M, SHEN W M, QI H, et al. An weighted ontology -based semantic similarity algorithm for web service [ J ]. Expert Systems with Applications, 2009 ( 36 ) : 12480 - 12490.
  • 6代钰,杨雷,张斌,高岩.支持组合服务选取的QoS模型及优化求解[J].计算机学报,2006,29(7):1167-1178. 被引量:91
  • 7马猛.关联挖掘的若干研究[D].合肥:安徽大学图书馆,2002.
  • 8AGRAWAL R. Mining association rules between sets of items in lager databases[ C]//Proc ACM SIGM OD Int'l Conf Management of Data. Washington : [ s. n. ] , 1993:207 -216.
  • 9铁治欣,陈奇,俞瑞钊.采掘关联规则的高效并行算法[J].计算机研究与发展,1999,36(8):948-953. 被引量:37
  • 10熊拥军,陈春颖.基于关联挖掘技术的数字图书馆个性化推送服务[J].图书情报工作,2010,54(1):125-129. 被引量:27

二级参考文献30

共引文献193

同被引文献12

  • 1王惠敏,聂规划.融合用户和项目相关信息的协同过滤算法研究[J].武汉理工大学学报,2007,29(7):160-163. 被引量:5
  • 2BREESE J, HECHERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filte- ring[ C]//Proceedings of the 14th Conference on Un- certainty in Artificial Intelligence ( UAI - 98 ). [S. 1. ] :[s. n. ] ,1998:43 -52.
  • 3TH R, KJ O, HAN I. The collaborative filtering rec- ommendation based on SOM cluster - indexing CBR [ J ]. Expert Systems with Applications,2003,25 ( 3 ) : 413 -423.
  • 4WU B, SHI Z Z. A clustering algorithm based on swarm intelligence [ C ] // Proceedings of the IEEE International Conference on Info - tech and Info - net Proceeding. [ S. 1. ] :[ s. n. ] ,2001:58 -66.
  • 5OYANAGI S, KUBOTA K, NAKASE A. Application of matrix clustering to Web log analysis and access prediction [ C ]//Proceedings of the Fourteenth Confer- enee on Uncertainty Collaborative Filtering. [ S. 1. ] : [s. n. ] ,1998:65 -70.
  • 6SARWAR B, KARYPIS G, KONSTAN J, et al. Ap- plication of dimensionality reduction in recommender system : a case study [ C ] // Proceedings of the ACM Web KDD Workshop on Web Mining for E - com- merce. New York : ACM Press,2000:82 - 90.
  • 7SARWAR B, KARYPIS G, KONSTAN J, et al. Item - based collaborative filtering recommendation algo- rithms [ C ] // Proceedings of the Tenth International World Wide Web Conference. [ S. 1. ]: [ s. n. ] ,2001 : 285 - 295.
  • 8成桂兰,刘旭东,陈德人.基于混合聚类的个性化推荐算法[J].武汉理工大学学报(信息与管理工程版),2011,33(3):379-381. 被引量:4
  • 9蒋盛益,陈东沂,王连喜,庞观松,杨博泓.国内外社会化标签挖掘研究综述[J].图书情报工作,2014,58(21):136-145. 被引量:10
  • 10崔妍,包志强.关联规则挖掘综述[J].计算机应用研究,2016,33(2):330-334. 被引量:166

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部