期刊文献+

面向数据稀疏问题的个性化组合推荐研究 被引量:15

Research on personal hybrid recommendation overcoming data sparse problem
在线阅读 下载PDF
导出
摘要 协同过滤技术是推荐系统中应用最为广泛的算法,其面临着数据稀疏性问题、冷启动、规模可扩展性等问题。工作体现在两点:一是在基于项的协同过滤模型中,改进了项间的相似度计算方法,相比调整余弦方法仅考虑一个要素,包含了三个要素:两项的具有共同用户的评分、共同评分用户数量、非共同评分用户数量;二是组合基于用户、基于项和基于奇异值分解的协同过滤推荐,通过多模型组合提高推荐性能。实验结果表明在基于项过滤中MAE指标上提高了4.30%。进一步,加权的组合多种模型方法比基于项方法提高了1.26%。 Collaborative filtering is one of the typical personal recommendations,but some difficulties exist,such as the data sparse problem,cold starting problem,scaling expanding problem.Two respects of work are done:on one hand,an improved similarity measure is presented to overcome the data sparse problem,on the other hand,the SVD based special user erasing method is presented to overcome the noise-sample problem.The experiments show that the improved method increases 4.30% in terms of MAE,and the combined model,which adopts the weighted average method,further increases 1.26%.
作者 姜维 庞秀丽
出处 《计算机工程与应用》 CSCD 2012年第21期21-25,30,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.70801022) 中央高校基本科研业务费专项资金(No.HIT.NSRIF.2010083) 中国博士后基金(No.20090450973) 黑龙江省博士后基金(No.LBH-Z09144) 黑龙江省教育厅科学技术研究项目(No.12511435)
关键词 个性化推荐 协同过滤 数据稀疏问题 组合推荐 personal recommendation collaborative filtering data sparse problem combined recommendation
  • 相关文献

参考文献12

  • 1吴湖,王永吉,王哲,王秀利,杜栓柱.两阶段联合聚类协同过滤算法[J].软件学报,2010,21(5):1042-1054. 被引量:83
  • 2赵宏霞,王新海,杨皎平.基于模糊推理的web客户需求协同过滤推荐算法[J].情报杂志,2011,30(1):174-177. 被引量:2
  • 3邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:565
  • 4黄创光,印鉴,汪静,刘玉葆,王甲海.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377. 被引量:220
  • 5Melville P, Mooney R J, N~tgarajan R.Content-boosted collaborative filtering for improved recommendations[C]// Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI-2002) , Edmonton, Canada, 2002 : 187-192.
  • 6Adomavicius G, Tuzhilin A.Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowl- edge and Data Engineering, 2C 05,17 (6) : 734-749.
  • 7Schafer J B,Dan F,Jon H, et al.Collaborative filter- ing recommender systems[M].[S.1.]:Springer-Verlag,2007: 291-324.
  • 8Herlocker J L, Konstan J A, Botchers A, et al.An algorith- mic framework for performing collaborative filtering[C]// Proceedings of the 22nd Annual International ACM SI- GIR Conference on Research and Development in In- formation Retrieval.Berkeley, California, United States: ACM, 1999 : 230-237.
  • 9崔林,宋瀚涛,陆玉昌.基于语义相似性的资源协同过滤技术研究[J].北京理工大学学报,2005,25(5):402-405. 被引量:8
  • 10Sarwar B, Karypis G,Konstan J, et al.Incremental singu- lar value decomposition algorithms for highly scalablerecommender systems[C]//Fifth International Conference on Computer and Information Science,2002 : 27-28.

二级参考文献74

  • 1高旻,吴中福.基于个性化情境和项目的协同推荐研究[J].东南大学学报(自然科学版),2009,39(S1):27-31. 被引量:8
  • 2陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 3Xu HL,Wu X,Li XD,Yan BP.Comparison study of Internet recommendation system.Journal of Software,2009,20(2):350-362 (in Chinese with English abstract).http://www.jos.org.cn/1000-9825/3388.htm[doi:10.3724/SP.J.1001.2009.03388].
  • 4Marlin B.Collaborative Filtering:A machine learning perspective[MS.Thesis].Toronto:University of Toronto,2004.
  • 5Hofmann T.Latent semantic models for collaborative filtering.ACM Trans.on Information System,2004,22(1):89-115.[doi:10.1145/963770.963774].
  • 6Blei DM,Ng AY,Jordan MI.Latent Dirichlet allocation.Journal of Machine Learning Research,2003,3(3):993-1022.[doi:10.1162/ jmlr.2003.3.4-5.993].
  • 7Netflix update:Try this at home.2006.http://sifter.org/~simon/journal/20061211.html.
  • 8Zhang S,Wang WH,Ford J,Makedon F.Learning from incomplete ratings using non-negative matrix factorization.In:Ghosh J,ed.Proc.of the 6th SIAM Conf.on Data Mining.Bethesda:SIAM,2006.549-553.
  • 9Cheng YZ,Church GM.Biclustering of expression data.In:Bourne PE,ed.Proc.of the 8th Int'l Conf.on Intelligent Systems for Molecular Biology.La Jolla:AAAI Press,2000.93-103.[doi:10.1016/j.ipm.2008.12.004].
  • 10Cheng G,Wang F,Zhang CS.Collaborative filtering using orthogonal nonnegative matrix tri-factorization.Information Processing & Management,2009,45(3):368-379.

共引文献812

同被引文献163

引证文献15

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部