摘要
协同过滤技术是推荐系统中应用最为广泛的算法,其面临着数据稀疏性问题、冷启动、规模可扩展性等问题。工作体现在两点:一是在基于项的协同过滤模型中,改进了项间的相似度计算方法,相比调整余弦方法仅考虑一个要素,包含了三个要素:两项的具有共同用户的评分、共同评分用户数量、非共同评分用户数量;二是组合基于用户、基于项和基于奇异值分解的协同过滤推荐,通过多模型组合提高推荐性能。实验结果表明在基于项过滤中MAE指标上提高了4.30%。进一步,加权的组合多种模型方法比基于项方法提高了1.26%。
Collaborative filtering is one of the typical personal recommendations,but some difficulties exist,such as the data sparse problem,cold starting problem,scaling expanding problem.Two respects of work are done:on one hand,an improved similarity measure is presented to overcome the data sparse problem,on the other hand,the SVD based special user erasing method is presented to overcome the noise-sample problem.The experiments show that the improved method increases 4.30% in terms of MAE,and the combined model,which adopts the weighted average method,further increases 1.26%.
出处
《计算机工程与应用》
CSCD
2012年第21期21-25,30,共6页
Computer Engineering and Applications
基金
国家自然科学基金(No.70801022)
中央高校基本科研业务费专项资金(No.HIT.NSRIF.2010083)
中国博士后基金(No.20090450973)
黑龙江省博士后基金(No.LBH-Z09144)
黑龙江省教育厅科学技术研究项目(No.12511435)
关键词
个性化推荐
协同过滤
数据稀疏问题
组合推荐
personal recommendation
collaborative filtering
data sparse problem
combined recommendation