期刊文献+

一种基于粗集的协同过滤算法 被引量:11

Collaborative Filtering Algorithm based on Rough Set
在线阅读 下载PDF
导出
摘要 针对协同过滤中的数据稀疏问题,提出了一种基于粗集的协同过滤算法.首先通过自动填补空缺评分降低数据稀疏性;然后采用分类近似质量计算用户间的相似性形成最近邻居,产生推荐预测.实验结果表明,该算法有效地解决了数据稀疏问题,提高了推荐的质量. Aiming at the problem of data sparsity for collaborative filtering, a novel rough set-based collaborative filtering algorithm is proposed. This algorithm addresses the issue by automet.ically filling vacant ratings, uses the quality of approximation of classification to compute user similarity and form nearest neighborhood, and then generates recommendations. The experiment results argue that the algorithm efficiently improves sparsity of rating data, and promises to make recommendations more accurately than conventional CF algorithms.
出处 《小型微型计算机系统》 CSCD 北大核心 2005年第11期1971-1974,共4页 Journal of Chinese Computer Systems
基金 国家自然基金(70371004)资助
关键词 协同过滤 数据稀疏 粗集 分类近似质量 collaborative filtering data sparsity rough set quality of approximation of classification
  • 相关文献

参考文献19

  • 1John S Breese, David Heckerman, Carl Kadie.Empirical analysis of predictive algorithms for collaborative filtering[C]. In: Fourteenth Conference on Uncertainty in Artificial Intelligence,Madison, 1998,43-52.
  • 2Sarwar B, Karypis G, Konstan J A, Riedl J T. Item-Based collaborative filtering recommendation algorithms[C].In: Proceedings of the 10th International World Wide Web Conference, 2001, 285-295.
  • 3邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:565
  • 4Aggarwal C A, Wolf J L, Wu K L et al. Horting hatches an egg: a new graph-theoretic approach to collaborative filtering[C]. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1999,201-212.
  • 5Billsus D, Pazzani M J. Learning collaborative information fillters[C]. In Proceedings of the International Conference on Machine Learning, Madison, 1998, 46-54.
  • 6Arnd K, Bernard M. Clustering for collaborative filtering applications[C]. In:Proceedings of Computational Intelligence for Modelling, Control-Automation, IOS Press, 1999.
  • 7Ansari A, Essegaier S, Kohli R. Internet recommendation systems[J]. Journal of Marketing Research 2000,37, 363-375.
  • 8Sarwar B, Konstan J A et al. Using filtering agents to improve prediction quality in the grouplens research collaborative filtering system[C]. In: Conference on Computer Supported Cooperative Work, 1998.
  • 9Nathaniel Good, J Ben Schafer, Joseph A Konstan et al. Combining collaborative filtering with personal agents for better recommendations[C].In: Conference of the American Association of Artifical Intelligence,1999, 439-446.
  • 10Mobasher B, Jin X, Zhou Y. Semantically enhanced collaborative filtering on the web[C]. In:Proceedings of the European Web Mining Forum,2004.

二级参考文献15

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167.

共引文献577

同被引文献70

引证文献11

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部