期刊文献+

基于新型粒子群优化的粒子滤波雷达目标跟踪算法 被引量:8

A Particle Filter Radar Target Tracking Algorithm Based on Novel Particle Swarm Optimization
原文传递
导出
摘要 针对基于粒子群优化算法的粒子滤波精度不高,容易陷入局部最优,难以满足目标跟踪的问题,提出了一种新的粒子群优化粒子滤波算法,该算法利用社会个体对群体的认知规律优化了粒子更新的方法,并且完善了粒子速度的更新策略,使优势速度有较小概率变异,从而提高了寻优能力,同时将劣势速度随机初始化,保证了样本的多样性.实验结果表明,该算法精度高,鲁棒性强,可以有效地应用于雷达机动目标跟踪. Particle filter based on particle swarm optimization algorithm is not precise and easily traps in local optimum, and it is difficult to satisfy the requirement of target tracking. To solve these problems, a novel particle swarm optimized particle filter is proposed. The method for updating particles is optimized by analyzing the cognition rule of individuals to groups, and the speed update strategy is improved. As a result, the superior particle velocity can mutation with a small probability, which improves the search ability. Meanwhile, due to the random evaluation for inferior particle, the diversity of filter is ensured. The simulation results show that this algorithm has the high precision, strong robustness and it's suitable for radar target tracking.
出处 《信息与控制》 CSCD 北大核心 2012年第4期413-418,共6页 Information and Control
基金 国防重点预研项目(40405020201) 高等学校博士学科点专项科研基金资助课题(200802881017)
关键词 粒子群优化 粒子滤波 目标跟踪 闪烁噪声 particle swarm optimization particle filter target tracking glint noise
  • 相关文献

参考文献5

二级参考文献55

共引文献139

同被引文献104

引证文献8

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部