期刊文献+

基于聚类粒子滤波器的故障预报方法研究 被引量:3

A Fault Prediction Method Based on Clustering Particle Filter
在线阅读 下载PDF
导出
摘要 为减少计算量,及时预报系统故障,提出了一种基于聚类粒子滤波器的故障预报方法.在粒子滤波中引入k均值聚类算法,将粒子集中的所有粒子聚为若干类,以每一类粒子的质心代表该类粒子参与每次的粒子更新,显著减少了参与迭代计算的粒子数目,从而减少了粒子滤波算法的计算量.仿真结果验证了基于聚类粒子滤波器的故障预报方法的有效性. A fault prediction method based on clustering particle filter is put forward to reduce computing cost and predict system faults in time. The k-means clustering algorithm is introduced into the particle filtering, and all the particles are classified into some clusters. The centroid of each cluster regarded as the representative of the particle cluster is updated each time. The number of particles needed to be iteratively computed is decreased sharply, thus the computing cost of particle filtering is reduced. Simulation results verify the validity of the presented clustering-particle-filter-based fault prediction method.
出处 《信息与控制》 CSCD 北大核心 2009年第1期115-120,共6页 Information and Control
基金 国家自然科学基金资助项目(60736026) "教育部新世纪优秀人才支持计划"资助项目.
关键词 粒子滤波 聚类 K均值 计算量 故障预报 particle filtering clustering k-means computing cost fault prediction
  • 相关文献

参考文献15

  • 1胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:295
  • 2Djuric P M, Kotecha J H, Zhang J Q, et al. Particle filtering[J]. IEEE Signal Processing Magazine, 2003, 20(5): 19-38.
  • 3Kwok C, Fox D, Meila M. Real-time particle filters[J]. Proceedings of the IEEE, 2004, 92(3): 469-484.
  • 4莫以为,萧德云.进化粒子滤波算法及其应用[J].控制理论与应用,2005,22(2):269-272. 被引量:41
  • 5袁泽剑,郑南宁,贾新春.高斯-厄米特粒子滤波器[J].电子学报,2003,31(7):970-973. 被引量:77
  • 6方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 7Chang C, Ansari R. Kernel particle filter for visual tracking[J]. IEEE Signal Processing Letters, 2005, 12(3): 242-245.
  • 8Ng W, Li J, Godsill S, et al. A review of recent results in multiple target tracking[A]. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis[C]. Piscataway, NJ, USA: IEEE, 2005.40-45.
  • 9Ghirmai T, Bugallo M F, Miguez J, et al. A sequential Monte Carlo method for adaptive blind timing estimation and data detection[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 2855-2865.
  • 10Chen M Z, Zhou D H. Particle filtering based fault prediction of nonlinear systems[EB/OL], http://citeseerx.ist.psu.edu/ viewdoc/download;j sessionid=580B950D368E1B5DE56EE71A516FD4F9?doi= 10.1.1.61.3298&rep=rep 1 &type=pdf, 2001/ 2008.

二级参考文献118

  • 1南京大学数学系编.数值逼近方法[M].北京:科学出版社,1978..
  • 2G Kitagawa. Monte Carlo filter and smoother for non Gaussian nonlinear state space models [J] .Journal of Computational and Graphical Statistics, 1996,5:1 - 25.
  • 3Avitzour. A stochastic simulation Bayesian approach to multitarget tracking [A] .IEE Proceedings on Radar,Sonar and Navigation [C].UK: lEE, 1995.
  • 4M lsard, Blake. Contour tracking by stochastic propagation of conditional density [ A ]. European Conference on Computer Vision [ C ]. UK:Cambridge, 1996. 343 - 356.
  • 5I Kazuftmfi, K-Q Xiong. Gaussian filters for nonlinear filtering problems[ EB/OL]. available from http://www, researchindex, com.
  • 6S J Julier,J K Uhlmann. A new extension of the Kalman filter to nonlinear systems [ A ]. Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defence Sensing, Sinmlation and Controls[ C], Florida: ISADSSC, 1997.
  • 7A Doucet. On Sequential Simtdafion-Based Methods for Bayesian Filtering [ EB/OL]. available from http://www, researchindex, com.
  • 8R Van der Merwe. A Doucet the Unscented Particle Filter, Advances in Neural Information Processing Systems [M]. M IT,2000.
  • 9N J Gordon, D J Salmond, A F M Smith. A novel approach to nonlinear and non-Ganssian Bayesian state estimation [ A ]. IEE Proceedings-F[C]. UK: IEE, 1993,.
  • 10VERMA V, LANGFORD J, SIMMONS R. Non-parametric fault identification for space rovers [ C ]//Proc of the 6 th Int Symposium on Artificial Intelligence, Robotics and Automation in Space. [ s. l.]:[s.n. ] ,2001.

共引文献582

同被引文献34

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部