期刊文献+

基于粒子群优化的室内动态热舒适度控制方法 被引量:18

Indoor Dynamic Thermal Comfort Control Method Based on Particle Swarm Optimization
原文传递
导出
摘要 针对预测平均投票数(predicted mean vote,PMV)值在舒适区和节能区之间周期性交替变化的控制方法,提出了基于PMV的动态舒适度冷/热抱怨模型和能耗模型.基于此模型,根据用户设定的舒适和节能两者的协调关系,运用改进的多目标离散粒子群优化算法,得出动态舒适度控制系统输入参数的寻优方法.该方法只需实时测量热环境和居住者热感觉数据,不需建立热环境物理解析模型,普适性强.实验证明了上述控制方法的有效性,该方法可实现动态舒适度的最优控制. A PMV (predicted mean vote)-based dynamic thermal comfort (cool/hot) complaint event model and an energy consumption model are proposed for the control method in which PMV values change alternatively between comfortable and energy-saving zones. An improved multi-objective algorithm based on discrete PSO (particle swarm optimization) is applied to calculating optimal values of parameters in dynamic comfort control system according to the balance (specified by users) between comfort and energy conservation. This method only needs to measure data of thermal environment and occupant's thermal sensation, without building the physical analytic model. Experiment results demonstrate the effectiveness of the proposed control method. In addition, the realizability of the optimal control to dynamic comfort is also verified.
出处 《信息与控制》 CSCD 北大核心 2013年第1期100-110,共11页 Information and Control
基金 国家自然科学基金资助项目(61074070 61004005) 山东省自然科学基金资助项目(ZR2009GZ004) 山东省科技攻关项目(2009GG10001029)
关键词 预测平均投票数 动态热舒适度 多目标粒子群优化算法 基于数据的控制 PMV (predicted mean vote) dynamic thermal comfort multi-objective particle swarm optimization algorithm data-based control
  • 相关文献

参考文献24

  • 1Yang I H, Yeo M S, Kim K W. Application of artificial neural network to predict the optimal start time for heating system in building [J]. Energy Conversion and Management, 2003, 44(17): 2791-2809.
  • 2Tse W L, Albert T P. Implementation of comfort-based air- handling unit control algorithms[J]. ASHRAE Transactions, 2000, 106(1): 29-43.
  • 3Fanger P O. Thermal comfort[M]. Copenhagen, Danmark: Dan- ish Technical Press, 1970.
  • 4Deb K. Multi-objective optimization using evolutionary algo- rithms[M]. New York, NJ, USA: John Wiley & Sons, 2001.
  • 5Nassif N, Kajl S, Sabourin R. Optimization of HVAC con- trol system strategy using two-objective genetic algorithm[J]. HVAC&R Research, 2005, 11(3): 459-486.
  • 6Marijt R. Multi-objective robust optimization algorithms for improving energy consumption and thermal comfort of build- ings[D]. Leiden, Nederland: Leiden University, 2009.
  • 7He M, Cai W J, Li S Y. Multiple fuzzy model-based temperature predictive control for HVAC systems[J]. Information Sciences, 2005, 169(1/2): 155-174.
  • 8Kusiak A, Tang F, Xu G L. Multi-objective optimization of HVAC system with an evolutionary computation algorithm[J]. Energy, 2011, 36(5): 2440-2449.
  • 9端木琳,于连广,胡文军.动态环境下热舒适问题的探讨[J].制冷与空调,2004,4(5):24-27. 被引量:8
  • 10李慧,张庆范,段培永.基于用户学习的智能动态热舒适控制系统[J].四川大学学报(工程科学版),2011,43(2):128-135. 被引量:12

二级参考文献67

共引文献141

同被引文献164

引证文献18

二级引证文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部