期刊文献+

复映射z←e^(i(π/2))+c构造上半平面分形图及“Escher”极限图 被引量:7

FRACTAL IMAGES IN UPPER HALF PLANE AND “ESCHER” LIMIT IMAGES FROM COMPLEX MAPPING z←e^(i(π/2))+c
在线阅读 下载PDF
导出
摘要 文中提出用复映射z←eiπ2 zw + c(w = α+ iβ,α,β∈R1 )在动力平面和参数平面上构造上半平面、方极限和圆极限分形图的简便方法.“周期化”动力平面或参数平面,确定基本计算区域,应用同胚仿射变换将基本计算区域自相似地映射到上半平面,进而构造方极限和圆极限分形图.通过指数w 及参数c的变化,应用逃逸时间算法,大量构造复映射z←eiπ2 zw + c在动力平面和参数平面上的周期形式、上半平面形式。 In this paper, a new simple method is presented. Owing to this method, the fractal images of the upper half plane, the square limit and the circle limit in the dynamic plane and the parameter plane are constructed from the complex mapping z ←e iπ2 z\+w +c(w=α+ i β,α,β∈R\+1) . The dynamic plane and the parameter plane are treated by means of periodization. The fundamental compute region B is determined and self\|similarly mapped into the upper half plane by using the homeomorphic affine transformation θ , so the fractal images of the upper half plane, square limit, and circle limit can be constructed. A great variety of these kinds of the J and M fractal artistic patterns from the complex mapping z ←e iπ2 z\+w +c can be created with the method presented.
作者 陈宁
出处 《计算机研究与发展》 EI CSCD 北大核心 2000年第2期213-217,共5页 Journal of Computer Research and Development
基金 1999 年国家自然科学基金项目!(项目编号69973033) 1998 年辽宁省自然科学基金项目!(项目编号9810200106)
关键词 混沌 复映射 极限图 分形图 图形结构 chaos, fractal, complex mapping, limit image
  • 相关文献

参考文献4

  • 1陈宁,朱伟勇.复映射z←zw+c(w=α+iβ)构造M集[J].计算机研究与发展,1997,34(12):899-907. 被引量:26
  • 2Chen Ning,Computers Graphics,1998年,22卷,4期,537页
  • 3Chung K W,Computers Graphics,1998年,22卷,4期,527页
  • 4陈宁,M -J混沌分形图谱,1998年

共引文献25

同被引文献34

  • 1刘华杰.通过微机作图理解混沌运动[J].科学中国人,1995(6):39-42. 被引量:1
  • 2陈宁,李子川,金媛媛.双曲极限圆映射的混沌吸引子及充满Julia集[J].沈阳建筑大学学报(自然科学版),2006,22(6):999-1003. 被引量:4
  • 3Escher M C.Escher on Escher:Exploring the Infinite[M].New York:Harry N.Abrams,1989.
  • 4Armstrong A M.Groups and Symmetry[M].New York:Springer,1998.
  • 5Chung K W,Chan H S Y,Wang B N.Hyperbolic symmetries from dynamics[J].Computer and Mathematics with Applications,1996,31(2):33-47.
  • 6Chung K W,Chan H S Y,Wang B N.Tessellations with the modular group from dynamics[J].Computers & Graphics,1997,21(4):523-534.
  • 7Chung K W,Chan H S Y,Wang B N.Smaller and smaller from dynamics[J].Computers & Graphics,1998,22(4):527-536.
  • 8Sprott J C.Automatic generation of strange attractors[J].Computers & Graphics,1993,17 (3):325 -332.
  • 9Field M and Golubitsky M.Symmetry in Chaos[M].New York:Oxford University Press,1992.
  • 10Chen N,Zhu X L and Chung K W.M AND J sets from Newton's Transformation of the Transcendental Mapping with VCPS[J].Computers & Graphics,2002,26(2):371-383.

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部