期刊文献+

ABSOLUTE STABLE HOMOTOPY FINITE ELEMENT METHODS FOR CIRCULAR ARCH PROBLEM AND ASYMPTOTIC EXACTNESS POSTERIORI ERROR ESTIMATE 被引量:2

ABSOLUTE STABLE HOMOTOPY FINITE ELEMENT METHODS FOR CIRCULAR ARCH PROBLEM AND ASYMPTOTIC EXACTNESS POSTERIORI ERROR ESTIMATE
全文增补中
导出
摘要 In this paper, HFEM is proposed to investigate the circular arch problem. Optimal error estimates are derived, some superconvergence results are established, and an asymptotic exactness posteriori error estimator is presented. In contrast with the classical displacement variational method, the optimal convergence rate for displacement is uniform to the small parameter. In contrast with classical mixed finite element methods, our results are free of the strict restriction on h(the mesh size) which is preserved by all the previous papers. Furtheremore we introduce an asymptotic exactness posteriori error estimator based on a global superconvergence result which is discovered in this kind of problem for the first time. In this paper, HFEM is proposed to investigate the circular arch problem. Optimal error estimates are derived, some superconvergence results are established, and an asymptotic exactness posteriori error estimator is presented. In contrast with the classical displacement variational method, the optimal convergence rate for displacement is uniform to the small parameter. In contrast with classical mixed finite element methods, our results are free of the strict restriction on h(the mesh size) which is preserved by all the previous papers. Furtheremore we introduce an asymptotic exactness posteriori error estimator based on a global superconvergence result which is discovered in this kind of problem for the first time.
机构地区 Sichuan Univ
出处 《Journal of Computational Mathematics》 SCIE CSCD 2002年第6期653-672,共20页 计算数学(英文)
关键词 HFEM arch SUPERCONVERGENCE asymptotic exactness posteriori error estimator HFEM arch superconvergence asymptotic exactness posteriori error estimator
  • 相关文献

参考文献4

  • 1Zhimin Zhang.Arch beam models: finite element analysis and superconvergence[J].Numerische Mathematik.1992(1)
  • 2Mark Ainsworth,Alan Craig.A posteriori error estimators in the finite element method[J].Numerische Mathematik.1991(1)
  • 3R. Verfürth.A posteriori error estimators for the Stokes equations[J].Numerische Mathematik.1989(3)
  • 4Douglas N. Arnold.Discretization by finite elements of a model parameter dependent problem[J].Numerische Mathematik.1981(3)

同被引文献6

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部