期刊文献+

一种基于加权投票的术语自动识别方法 被引量:16

A Weighted Voting Based Automatic Term Recognition Method
在线阅读 下载PDF
导出
摘要 术语自动识别目的是获取领域术语表中未登录的规范化词汇,是信息抽取、文本挖掘等领域中的重要任务。近年来,利用统计方法抽取术语取得了一定进展,出现了C-Value、NC-Value、TermExtractor等有效方法。但是,对各种统计指标进行加权投票的方法研究较少。该文首先从大量已知术语中收集术语的词性模板,并借之抽取候选术语,接着利用了统计指标加权投票对这些候选术语进行排序。在IEEE 2006-2007电子工程领域文献上的实验结果表明,加权投票方法比任一单独指标的识别效果更好。 Automatic Term Recognition(ATR),as an important task in Information Extraction and Text Mining,aims at acquiring formalized words that are not recorded in time in the glossary.In recent years,several statistical methods have made substantial progresses in this field,and emerging methods such as C-Value,NC-Value,Term-Extractor have shown great advantages on this task.However,few work has been done on the Weighted Voting algorithm which could merge those statistical metrics as a whole.In this paper,we first collect part-of-speech rules from already-known terms,then match them with pos-tagged strings to acquire candidate terms,and finally sort those terms by Weighted Voting algorithm.The experiment on literature in Electric Engineering field from IEEE2006-2007 metadata shows that the weighted voting algorithm performs better than any seperate metrics alone.
出处 《中文信息学报》 CSCD 北大核心 2011年第3期9-16,共8页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60673087)
关键词 自动术语识别 投票算法 信息抽取 文本挖掘 automatic term recognition voting algorithm information extraction text mining
  • 相关文献

参考文献11

  • 1Frantzi K. T. , Ananiadou S. The C/NC-value.. do main independent method for multi-word term extrac tion [J]. Journal of Natural Language Processing 1999, 6(3) :145-180.
  • 2Kageura Kyo, Umino Bin. Methods of Automatic Term Recognition: A Review[J]. Terminology,1996, 3(2) : 259-289.
  • 3Sclano, F., and Velardi, P. Termextractor: a web application to learn the shared terminology of emergent web communities[C]//Proceedings of the 3rd Interna-tional Conference on Interoperability for Enterprise Software and Applications[C] (I-ESA 2007). 2007.
  • 4KozakovL. , Park Y. , FinT. H., DrissiY., Doga- nata Y. N. , Cofino T. Glossary extraction and knowl- edge in large organisations via semantic web teehnolo- gies[C]//Proceedings of the 6th International Semantic Web Conference and the 2nd Asian Semantic Web Con- ference (Se mantle Web Challenge Track), 2004.
  • 5Mima H. , Ananiadou S. and Nenadic G. ATRACT Workbench: An Automatic Term Recognition and Clustering of Terms, in Text, Speech and Dialogue [M]. Lecture Notes in AI. Springer Verlag, 2001: 2001-2166.
  • 6Frantzi Katerina, Ananiadouy SoPhia, MimazHideki. Automatic Recognition of Multi-Word Terms: TheC- Value/NC-Value Method[J]. International Journal on Digital Libraries, 2000.
  • 7I. Fahmi. Incorporating dependency relation for multi- word term extraction[J]. TABU Dag, 2005.
  • 8Salton G, McGill M. J. Introduction to modern infor- mation retrieva[J]. McGraw-Hill, 1983.
  • 9Sinha R. , Mihalcea R. Unsupervised graphbasedword sense disambiguation using measures of word semantic similarity[C]//ICSC '07: Proceedings of the Interna- tional Conference on Semantic Computing. Washington DC, USA: IEEE Computer Society, 2007:363-369.
  • 10Z. Zhang, J. Iria, C. Brewster, F. Ciravegna. A Comparative Evaluation of Term Recognition Algo- rithms[C]//Proceedings of the 6th International Con- ference on Language Resources and Evaluation. Mar- rakech, Marocco, 2008.

同被引文献167

引证文献16

二级引证文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部