期刊文献+

基于软近邻投票的图像标签相关性计算 被引量:4

Image Tag Relevance Estimation by Soft Neighbor Voting
在线阅读 下载PDF
导出
摘要 如何自动判断社会化标签与图像内容之间的相关性是社会化多媒体内容检索领域一个重要的研究问题.近邻投票算法是已知的计算标签相关性的最有效方法之一.但该算法采用硬投票策略,并未考虑近邻图像的权重以及近邻图像自身标签的质量.针对上述问题,文中提出一种一般性的软近邻投票框架,通过考察近邻权重和近邻标签权重这两个维度,系统性地比较了23种软近邻投票实现方案.以近120万张Flickr图像为训练集、约两万张图像为测试集的实验表明,软近邻投票策略要优于硬投票策略:平均查准率从0.764提升到0.783,且软近邻投票对于近邻个数这一重要参数的选取相对不敏感. How to automatically determine the relevance of a social tag with respect to image content is crucial for social multimedia retrieval.The neighbor voting algorithm is known to be effective for tag relevance estimation.However,it uses a hard voting strategy,which does not take into account the importance of neighbor images,nor the quality of the tags associated with the neighbors.As an improvement,we propose in this paper a generic soft neighbor voting framework.By exploiting multiple methods for computing the importance of the neighbors and the importance of the tags of the neighbors,we systematically compare up to 23 distinct soft neighbor voting solutions.We conduct experiments using 1.2 million Flickr images as training data and another set of 20k images as test data.The results show that the proposed soft neighbor voting is better than the standard neighbor voting algorithm,improving mean Average Precision from 0.764 to 0.783.Soft neighbor voting is also found to be less sensitive with respect to the number of neighbors for voting.
出处 《计算机学报》 EI CSCD 北大核心 2014年第6期1365-1371,共7页 Chinese Journal of Computers
基金 中国人民大学科学研究基金(中央高校基本科研业务费专项资金)(13XNLF05 14XNLQ01) 国家自然科学基金(61303184 61003205) 教育部高等学校博士点专项科研基金(20130004120006)资助~~
关键词 图像检索 社会化标签 图像标签相关性 软近邻投票 image retrieval social tags image tag relevance soft neighbor voting
  • 相关文献

参考文献19

  • 1Ames M,Naaman M.Why we tag:Motivations for annotation in mobile and online media//Proceedings of the SIGCIII Conference on Human Factors in Computing Systems.San Jose,USA,2007:971-980.
  • 2Golder S,Huberman B.Usage patterns of collaborative tagging systems.Journal of Information Science,2006,32(2):198-208.
  • 3Li X,Snoek C,Worring M.Learning social tag relevance by neighbor voting.IEEE Transactions on Multimedia,2009,11(7):1310-1322.
  • 4Truong B,Sun A,Bhowmick S.Content is still king:The effect of neighbor voting schemes on tag relevance for social image retrieval//Proceedings of the ACM International Conference on Multimedia Retrieval.Hong Kong,China,2012:9.
  • 5Lee S,De Neve W,Ro Y.Visually weighted neighbor voting for image tag relevance learning.Multimedia Tools and Applications,2013:1-24.
  • 6Ballan L,Bertini M,Del Bimbo A,Serra G.Enriching and localizing semantic tags in Internet videos//Proceedings of the ACM International Conference on Multimedia.Scottsdale,USA,2011:1541-1544.
  • 7Rafailidis D,Daras P.The TFC model:Tensor factorization and tag clustering for item recommendation in social tagging systems.IEEE Transactions on Systems,Man,and Cybernetics Systems,2013,43(3):673-688.
  • 8Liu D,Hua X-S,Yang L,Wang M,Zhang H J.Tag ranking//Proceedings of the International Conference on World Wide Web.Madrid,Spain,2009:351-360.
  • 9Zhu S,Jiang Y-G,Ngo C-W.Sampling and ontologically pooling web Images for visual concept learning.IEEE Transactions on Multimedia,2012,14(4):1068-1078.
  • 10Sun A,Bhowmick S,Nguyen K,Bai G.Tag-based social image retrieval:An empirical evaluation.Journal of the American Society for Information Science and Technology,2011,62(12):2364-2381.

二级参考文献21

  • 1Smeulders A W M, Worring M, Santini S, Gupta A, Jain R. Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2000, 22(12): 1349- 1380.
  • 2Ames M, Naaman M. Why we tag: Motivations for annota- tion in mobile and online media//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. San Jose, USA, 2007: 971- 980.
  • 3Wu L, Yang L, Yu N, Hua X S. Learning to tag//Proceed- ings of the 18th International Conference on World Wide Web. Madrid, Spain, 2009:361-370.
  • 4Akbas E, Yarman Vural F T. Automatic image annotation by ensemble of visual descriptors//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007: 1-8.
  • 5Sigurbj6rnsson B, van Zwol R. Fliekr tag recommendation based on collective knowledge//Proeeedings of the 17th International Conference on World Wide Web. Beijing, China,2008:327-336.
  • 6Freund Y, Iyer R, Schapire R E, Singer Y. An efficient boosting algorithm for combining preferences. The Journal of Machine Learning Research, 2003, 4:933-969.
  • 7Liu D, HuaXS, YangL, WangM, ZhangHJ. Tag rank- ing//Proceedings of the 18th International Conference on World Wide Web. Madrid, Spain, 2009:351-a60.
  • 8Wu L, Li M, Li Z, Ma W Y, Yu N. Visual language model- ing for image classification/Proceedings of the international workshop on multimedia information retrieval. Augsburg, Germany, 2007:115-124.
  • 9Sivic J, Zisserman A. Video Google: A text retrieval approach to object matching in videos//Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France, 2003z 1470 1477.
  • 10Katz S. Estimation of probabilities from sparse data for the language model component of a speech recognizer. IEEE Transactions on Acoustics, Speech and Signal Processing, 1987, 35(3): 400-401.

共引文献11

同被引文献42

  • 1Xu Hao,Wang Jingdong,Hua Xian-Sheng, et al. Tag refinement by regularized LDA[ C ]//Proceedings of the 17th ACM International Conference on Multimedia. New York : ACM, 2009 : 573 - 576.
  • 2Li Xirong, Snoek C G M, Worring M. Learning social tag rele- vance by neighbor voting[ J ]. IEEE Transactions on Multimedia, 2009, 11(7): 1310-1322.
  • 3Lee S, De Neve W, Ro Y M. Visually weighted neighbor voting for image tag relevance learning [ J ]. Multimedia Tools and Applica- tions, 2013.72(2) : 1363 -1386.
  • 4Marinho L B, Schmidt -Thieme L. CollaboratNe tag recommenda- tions[ C]//Data Analysis, Machine Learning and Applications. Berlin : Springer Berlin Heidelberg, 2008 : 533 - 540.
  • 5Oliveira B, Calado P, Pinto H S. Automatic tag suggestion based on resource contents [ C ]//Knowledge Engineering : Practice and Patterns. Berlin : Spriuger Berlin Heidelberg, 2008 : 255 - 264.
  • 6Li Xirong, Snoek C G M, Worring M. Unsupervised multi-feature tag relevance learning for social image retrieval [ C ]//Proceedings of the ACII International Conference on image and ideo Retrieval. New York: ACM, 2010:10-17.
  • 7Gao Yue, Wang Meng, Luan Huan-Bo, et al. Tag-based social im- age search with visual-text joint hypergraph earning[ C ]//Proceed- ings of the 19th ACM international conference on Multimedia. New York: ACM, 2011 : 1517 -1520.
  • 8Liu Dong, Hua Xian-Sheng, Yang Linjun, et al. Tag ranking [ C ]//Proceedings of the 18th international conference on World Wide Web. New York : ACM, 2009 : 351 - 360.
  • 9Sinha R. A cognitive analysis of tagging [ EB/OL]. [ 2014 -11 - 06 ]. http ://rashmisinha. com/2005/09/27/a -cognitive -analysis - of-tagging/.
  • 10eres C. Concept modeling by the masses: Folksonoray structure and interoperability [ C ]//'Conceptual Modeling - ER 2006. Ber- lin : Springer Berlin Heidelberg, 2006 : 325 - 338.

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部