期刊文献+

基于动态权值的多策略领域本体概念自动抽取 被引量:1

Automatic extraction method of domain ontology concepts based on dynamic weight multi-strategy
在线阅读 下载PDF
导出
摘要 为了提高中文领域本体概念抽取的自动化程度及准确率,提出了一种基于动态权值的多策略中文领域本体概念自动抽取方法。针对中文领域本体概念的特点,采用自动学习的规则学习模式,筛选出候选概念,将改进的DR&DC、TF-IDF和NC-Value三种策略融合,对候选概念进行领域归属度排序,将最终权重超过阈值的概念存入最终概念集合。实验证明了该方法抽取领域概念的可行性和有效性。 To improve the automation degree and accuracy of Chinese domain ontology concept extraction, a method of concepts automatic extraction based on dynamic weighted multi-strategy integration is proposed. This paper filters out the candidate concepts according to the rule templates using automatic learning; and then improved DR&DC, TF-IDF and NC-Value are integrated;it sequences the degree of domain membership of the candidate concept sets, and puts concepts whose weight exceeds the threshold value into final concept sets. After lots of experiments, the feasibility and validity of this method are proved.
出处 《计算机工程与应用》 CSCD 2014年第21期152-156,共5页 Computer Engineering and Applications
基金 新疆维吾尔自治区科技攻关项目(No.200931103) 新疆大学自然科学基金(No.XY110121)
关键词 动态权值 本体学习 多策略 概念抽取 dynamic weight ontology learning multi-strategy concept extraction
  • 相关文献

参考文献15

二级参考文献110

共引文献1243

同被引文献12

  • 1刘桃,刘秉权,徐志明,王晓龙.领域术语自动抽取及其在文本分类中的应用[J].电子学报,2007,35(2):328-332. 被引量:31
  • 2杜小勇,李曼,王珊.本体学习研究综述[J].软件学报,2006,17(9):1837-1847.
  • 3Navigli R,Velardi P.Learning domain ontologies from documentwarehouses and dedicated Web sites[J].ComputationalLinguistics,2004,30(2):151-179.
  • 4Wu Junyun,Xie Caiyun.Improvement of method of conceptextraction based on bootstrapping in ontology learning[J].Journal of Applied Sciences,2013,13(18):3620-3625.
  • 5Drymonas E,Zervanou K,Petrakis E G M.Unsupervisedontology acquisition from plain texts:The OntoGain system[C].Proceedings of the 15th International Conferenceon Applications of Natural Language to InformationSystems,Jun 23-25,2010.
  • 6Cimiano P,Volker J.Text2Onto:A framework for ontologylearning and data-driven change discovery[C].Proceedingsof the 10th International Conference on Applications ofNatural Language to Information Systems,Jun 15-17,2005.
  • 7Jiang X,Tan A.CRCTOL:A semantic-based domain ontologylearning system[J].Journal of the American Society forInformation Science and Technology,2010,61(1):150-168.
  • 8Hourali M,Montazer G A.A new approach for automatingthe ontology learning process using fuzzy theory andART neural network[J].Journal of Convergence InformationTechnology,2011,6(10).
  • 9Hai Dong,Khadeer H F.SOT:A semi-supervised ontologylearning-based focused crawler[J].Concurrency ComputationPractice and Experience,2013,25(12):1755-1770.
  • 10Ruiz-Martinez J M,Valencia-Garcia R.Ontology learningfrom biomedical natural language documents usingUMLS[J].Expert Systems with Applications,2011,38:12365-12378.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部