期刊文献+

时域反射电缆测长中的波速特性 被引量:12

Velocity characteristics of time domain reflectometry cable length measurement system
在线阅读 下载PDF
导出
摘要 行波波速是决定时域反射电缆测长系统测量精度的关键.为了减小波速的影响,研究了时域反射电缆测长中的波速特性,分析了行波传播速度和介电常数的频率特性,研究了电缆的材料特性和环境温度对电缆中行波传播速度的影响,总结了确定波速的依据.实验测量了行波信号在不同温度下的波速,给出了行波在PVC绝缘电缆中传播速度的温度补偿系数.实验结果表明,经过波速温度补偿后,时域反射电缆测长系统的测量精度得到显著提高. Traveling wave velocity is the key to the measuring accuracy of the time-domain reflectometry cable length measurement system. To reduce the impact of velocity, the velocity characteristics of time domain reflectometry cable length measurement system are studied, the frequency characteristics of traveling wave propagation velocity and dielectric constant are analyzed, and the influence of cable material parameters and ambient temperature on traveling wave propagation velocity on cable is investigated. The basis for wave velocity is summed up. The signal propagation temperature compensation coefficient of traveling wave determining the velocity at different temperature is measured, and the propagation velocity in the PVC insulated cable is presented. Experimental results show that the measuring accuracy of the time-domain reflectometry cable length measurement system is improved significantly by velocity temperature compensation.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2011年第4期58-62,共5页 Journal of Harbin Institute of Technology
关键词 时域反射 电缆 波速 频率特性 温度补偿 time-domain reflectometry propagation velocity frequency characteristic temperature compensation
  • 相关文献

参考文献11

  • 1SKIERUCHA W. Temperature dependence of time domain reflectometry-measured soil dielectric permittivity [J ]. Journal of Plant Nutrition and Soil Science, 2009, 172(2) :186 - 193.
  • 2束洪春,李义,宣映霞,王超,孙向飞,张杰.对不受波速影响的输电线路单端行波法故障测距的探讨[J].继电器,2006,34(8):1-6. 被引量:22
  • 3黄雄,王志华,尹项根,张哲.高压输电线路行波测距的行波波速确定方法[J].电网技术,2004,28(19):34-37. 被引量:94
  • 4DIN E S T E, GILANY M, AZIZ M M A, et al. A wavelet-based fault location technique for aged power cables [ C ]//2005 IEEE Power Engineering Society General Meeting. San Francisco: Institute of Electrical and Electronics Engineers Inc, 2005 : 2485 - 2491.
  • 5SHUTT-AINE J E. High-frequency characterization of twisted-pair cables[J].IEEE Transactions on Communications, 2001 , 49 (4) : 598 - 601.
  • 6GUSTAVSEN B, MARTINEZ J A, DURBAK D. Parameter determination for modeling system transients - Part II: insulated cables [J].IEEE Transactions on Power Delivery, 2005, 20 (3) : 2045 - 2050.
  • 7ENOKIZONO M, TANABE H. Numerical analysis of high-frequency induction heating including temperature dependence of material characteristics[J].IEEE Transactions on Magnetics, 1995, 31 (4) : 2438 - 2444.
  • 8DISSADO L A, ZADEH S, FOTHERGILL J C, et al. Temperature dependence of charge packet velocity in XLPE cable peelings [ C ]//2007 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. Vancouver: Institute of Electrical and Electronics Engineers Inc, 2007 : 425 - 428.
  • 9DIN E S T E, GILANY M, AZIZ M M A, et al. An PMU double ended fault location scheme for aged power cables [ C ]//2005 IEEE Power Engineering Society General Meeting. San Francisco: Institute of Electrical and Electronics Engineers Inc, 2005: 80- 86.
  • 10DUBICKAS V, EDIN H. On-line time domain reflectometry measurements of temperature variations of an XLPE power cable[ C ]//2006 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. Kansas City: Institute of Electrical and Electronics Engineers Inc, 2006:47 -50.

二级参考文献22

共引文献106

同被引文献125

引证文献12

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部