期刊文献+

基于BW ratio与二进制量子粒子群的基因选择方法

Method for Gene Selection Based on BQPSO
在线阅读 下载PDF
导出
摘要 信息基因选择在肿瘤识别问题中起着关键作用。本文提出了一种新的组合式的肿瘤信息基因选择方法,首先从单个基因的样本相关性角度出发,采用BW-ratio过滤指标对基因子集进行初选;然后采用二进制量子粒子群算法进一步对信息基因精选,支持向量机(SVM)作为分类器来测试和评估所选出的肿瘤信息基因的分类能力。在二进制量子粒子群算法中,我们给出了一种新的粒子更新的公式。实验是在两个公开的基因表达谱数据集急性白血病(Leukemia)和结肠癌(Colon Tumor)上完成,分别只需5和7个信息基因就能获得了100%和96.77%的10折交叉验证识别准确率。实验结果表明了所提出的信息基因选择方法对于肿瘤的识别问题研究的有效性和可行性。 Informatics gene selection plays an important role in tumor recognition.In this paper,a novel gene selection method is proposed,which firstly uses a BW ratio filter method to remove the genes that are irrelevant to tumor recognition and then adopts a binary Quantum behaved Particle Swarm Optimization(BQPSO) algorithm to remove redundant genes.The support vector machine(SVM) is used as an evaluator to estimate performance of the selected feature gene subsets for tumor diagnosing.Experiment results show that 100% and 96.77% of 10-fold cross-validation accuracy has been achieved by only five and seven genes for leukemia,colon tumor datasets.The results show the proposed algorithm is effective and feasible.
作者 杨华 骆嘉伟
出处 《微计算机信息》 2011年第1期224-226,共3页 Control & Automation
基金 基金申请人:骆嘉伟 项目名称:新型表达模式下的功能基因分析算法研究 基金颁发部门:国家自然科学基金委(60873184) 基金申请人:骆嘉伟 项目名称:基于聚类的基因功能预测方法 基金颁发部门湖南省自然科学基金委(07JJ5086)
关键词 基因表达谱 信息基因选择 二进制量子粒子群算法 支持向量机 gene expression profiles informative gene selection BQPSO support vector machines
  • 相关文献

参考文献12

  • 1Golub.T.R, Slonim.D.K, Tamayo P. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring[J]. Science, 1996, 14-4:531-537.
  • 2Yvan.S, Inaki.l, Pedro.L. A review of feature selection techniques in bioinformatics [J]. Bioinformatics, 2007, 19-23: 2507- 2517.
  • 3Qi Shen, Wei-Min Shi, Wei Kong. Hybrid paricle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data[J]. Computational Biology and Chemistry, 2008, 32:53-60.
  • 4Shutao li, Xixian Wu, Mingkui Tan. Gene Selection Using Genetic Algorithm and Support vectors machines [J]. Soft computing, 2008, 12:693-698.
  • 5S. Dudoit, J. Fridlyand, T. P. Speed. Comparison of discrimination methods for the classification of tumors using gene expression data [J]. Journal of the Ameriean Statistical Assoeiation, 2002, 97: 77 - 87.
  • 6Sun Jun, Feng Bin, Xu Wenbo. Particle Swarm Optimization with Particles Having Quantum Behavior [C]. IEEE Proceedings of Congress on Evolutionary Computation,2004:326-331.
  • 7沈佳宁,须文波,孙俊.基于量子粒子群算法的收敛性研究[J].微计算机信息,2009,25(6):218-219. 被引量:4
  • 8奚茂龙,孙俊,吴勇.一种二进制编码的量子粒子群优化算法[J].控制与决策,2010,25(1):99-104. 被引量:21
  • 9Topon P, Hitoshi I. Extraction of informative genes from microarray data [C]. Proceedings of the 2005 conference on Genetic and evolutionary computation, 2005, 453-460.
  • 10Chih-Chung Chang, Chih-Jen Lin. LIBSVM: A library for support vector machines (2001), Software available at http://www.csie. ntu.edu.tw/-cjlin/libsvm.

二级参考文献17

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2郭志坚,孙晓君.基于粒子群算法的随机和模糊混合机会约束规划研究[J].微计算机信息,2006(01Z):174-175. 被引量:8
  • 3ennedy J , Eberhart R. Part icle sw arm op tim izat ion [A . P roc IE E E Int Conf on N eu ral N etw orks [C.Perth, 1995. 194221948.
  • 4berhart R, Kennedy J. A new opt im izer using part iclesw arm theory [A . P roc 6th Int S ymp osium on M icroM aeh ine and H um an S cience[C. N agoya, 1995. 39243.
  • 5Sun J,Xu W B.A global search strategy of quantum-behaved particle warm optimization [C].Singapore: Proceedings of IEEE conferenceon Cybernetics and Intelligent Systems,2004:111-116.
  • 6Sun J,Feng B,Xu W B.Particle swarm optimization with particles having quantum behavior [C].Portland: Proceedings of 200g Congress on Evolutionary Computation,2000:325-331.
  • 7Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proe of IEEE Int Conf on Neural Network. Piseataway: IEEE, 1995: 1942-1948.
  • 8Kennedy J, Eberhart R C. A discrete version of the partiele swarm algorithm[C]. Proc of the 1997 Conf on System, Man and Cybernetics. Piscataway.. IEEE, 1997:4104-4109.
  • 9Khanesar M A, Teshnehlab M, Shoorehdeli M A. A novel binary particle swarm optimization [C]. 15th Mediterranean Conf on Control and Automation. Piscataway: IEEE, 2007:1- 6.
  • 10Sun J. Feng B, Xu W B. Particle swarm optimization with particles having quantum behavior[C]. IEEE Proc of Congress on Evolutionary Computation. Piscataway: IEEE, 2004: 325-331.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部