期刊文献+

量子粒子群和相关性分析在心电特征选择中的应用

Application of QPSO Algorithm and Correlation Analysis in Feature Selection from ECG Signal
在线阅读 下载PDF
导出
摘要 针对心电(ECG)信号情感识别中特征选择的问题,首先运用相关性分析方法,去除原始特征集中的高相关度特征,实现原始特征集的降维;其次,为了在降维后的特征空间中进行有效的特征选择,提出了一种改进的二进制量子粒子群算法(SBQPSO)。实验结果表明,基于本算法结合Fisher分类器建立的ECG信号情感识别系统能够对高兴、惊奇、厌恶、悲伤、愤怒和恐惧6种情感达到良好的识别效果。 This paper discussed the feature selection from ECG signal in affective recognition. At first, the original features with high correlation were deleted to reduce dimensionality of original feature set by correlation analysis. And then, an improved quantum-behaved particle swarm optimization with binary encoding algorithm was proposed to achieve effective feature selection in the feature space with reduced dimension. The experimental results shows that the affective recognition system based on this algorithm and fisher classifier recognize the anger, disgust, fear, grief, joy and surprise successfully.
出处 《计算机科学》 CSCD 北大核心 2012年第3期209-211,221,共4页 Computer Science
基金 国家自然科学基金(60873143) 国家重点学科基础心理学科研基金(NKFS07003) 中央高校基本科研业务费专项资金(XDJK2009B008)资助
关键词 特征选择 相关性分析 二进制量子粒子群算法 情感识别 Feature selection, Correlation analysis, BQPSO algorithm, Affective recognition
  • 相关文献

参考文献9

  • 1Picard R W, Vyzas E, Healey J. Toward Machine Emotional Intelligence:Analysis of Affective Physiological State[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001,23(10) : 1175-1191.
  • 2Kim K H,Bang S W,Kim S R. Emotion Recognition System Using Short-term Monitoring of Physiological Signals[J]. Medical Biology Engine Computer, 2004,42 : 419-427.
  • 3Haag A, Goronzy S, Schaich P, et al. Emotion Recognition Using Bio-sensors: First Step Towards an Automatic System [J]. Affective Dialogue Systems, 2004,3068 : 36-48.
  • 4余祖龙,周旭欣,艾信友,王玉,周波.基于离散平稳小波变换的心电信号去噪方法[J].科技创新导报,2008,5(4):31-32. 被引量:7
  • 5Xu Ya,Liu Guangyuan,Hao Min,Wen Wanhui,Huang Xiting.ANALYSIS OF AFFECTIVE ECG SIGNALS TOWARD EMOTION RECOGNITION[J].Journal of Electronics(China),2010,27(1):8-14. 被引量:2
  • 6Cheng Y Q, Zhuang Y M, Yang J Y. Optimal discriminant analysis using the rank decompositon[J].Pattern Recognition, 1992, 25(1):101-111.
  • 7Sun J, Feng B, Xu W 13. Particle swarm optimization with particles having quantum behavior[C] //Proceedings of 2004 Congress on Evolutionary Computation. 2004:235-331.
  • 8Jone K A D. An Analysis of the Behavior of a Class of Genetic Adaptive Systems [D]. No. 76-9381. University of Michigan, 1975.
  • 9Bradley A P. The use of the area under the ROC curve in the evaluation of machine learning algorithms [J].Pattern Recognition Society, 1997,30: 1145-1159.

二级参考文献10

  • 1R. Horlings.Emotion recognition using brain activity[]..2008
  • 2J. Wagner,J. Kim,E. Andre.From physiological signals to emotions: implementing and comparing selected methods for feature extraction and classifi-cation[].Proceedings of IEEE International Conference on Multimedia & Expo.2005
  • 3O. Villon,C. Lisetti.Toward recognizing indi-vidual’s subjective emotion from physiological signals in practical application[].Proceedings of the twentieth IEEE International Symposium on Computer-Based Medical Systems (CBMS’ ).2007
  • 4A. Haag,S. Goronzy,P. Schaich,et al.Emotion recognition using Bio-Sensors:first steps towards an automatic system[].Proceedings of Affective Dialogue SystemsTutorial and Research Workshop.2004
  • 5N. P. Utama,A. Takemoto,Y. Koike,K. Na-kamura.Phased processing of facial emotion: An ERP study[].Neurosciences Research.2009
  • 6L. Li,J. H. Chen.Emotion recognition using physiological signals from multiple subjects[].Pro-ceedings of IEEE International Conference on Intel-ligent Information Hiding and Multimedia Signal Processing (IIH-MSP’ ).2006
  • 7S. Ktata,K. Ouni,N. Ellouze.ECG signal maxima detection using wavelet transform[].Proceed-ings of IEEE International Symposium on Industrial Electronics.2006
  • 8J. Kennedy,R. Eberhart.Particle swarm opti-mization[].Proceedings of IEEE International Conference on Neural Networks.1995
  • 9D. F. Cheng,G. Y. Liu,Y. H. Qiu.Applications of particle swarm optimization and K-Nearest neighbors to emotion recognition from physiological signals[].Proceeding of International Conference on Computational Intelligence and Security.2008
  • 10Kennedy J,Eberhart RC.A discrete binary version of the particle swarm algorithm[].Proceedings of the IEEE International conference on systems Man and Cybernetics.1997

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部