期刊文献+

基于树状条件随机场模型的语义角色标注 被引量:4

Semantic Role Labeling Based on Tree Conditional Random Fields Model
在线阅读 下载PDF
导出
摘要 针对线性条件随机场模型不能清楚表达语义角色内部结构关系的问题,提出一种基于树状条件随机场模型的语义角色标注方法。对句法依存树上的层次依赖关系和兄弟依赖关系进行标注,处理状态变量之间的长距离依赖,利用CRFs模型能添加任意特征的优点,在系统中添加新的组合特征和介词短语角色。在CoNNL 2008 Shared Task语料库上进行实验,结果证明该方法能有效提高系统的准确率和召回率。 Based on the deficiency of Conditional Random Fields(CRFs) can not describe structure relationship of the internal semantic roles more exactly, this paper proposes an approach to Semantic Role Labeling(SRL) which is based on Tree Conditional Random Fields(TCRFs) model. By labeling Hierarchical dependencies and Brother dependencies of syntactic dependency tree, it can deal with the long-distance dependencies between different state variants effectively. Meanwhile, taking advantage of CRFs model can add any features, some new combinative features and preposition phrase role are added to the system. Experimental results which are based on CoNNL 2008 Shared Task show that the proposed method can improve precision and recall rate of the system.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第18期41-42,45,共3页 Computer Engineering
基金 甘肃省自然科学基金资助项目(0809RJZA018)
关键词 语义角色标注 特征选择 树状条件随机场 semantic role labeling feature selection Tree Conditional Random Fields(TCRFs)
  • 相关文献

参考文献5

二级参考文献51

  • 1刘群,张华平,俞鸿魁,程学旗.基于层叠隐马模型的汉语词法分析[J].计算机研究与发展,2004,41(8):1421-1429. 被引量:200
  • 2Wang Houfeng,Shi Wuguang.A simple rule-based approach to organization name recognition in chinese text[A].Proc of 5th CICLing[C].LNCS 3406,Heidelberg,German:Springer-Verlag,2005.769-772.
  • 3Hongkui Yu,Huaping Zhang,Quan Liu.Recognition of Chinese organization name based role tagging[A].Proc of Advances in Computation of Oriental Languages[C].Beijing:Tsinghua University Press,2003.79-87.
  • 4McCallum A,Freitag D,Pereira F.Maximum entropy Markov models for information extraction and segmentation[A].Proc of 17th ICML[C].Stanford,California,USA:Morgan Kaufmann,2000.591-598.
  • 5John Lafferty,Andrew McCallum,Fernando Pereira.Conditional random fields:Probabilistic models for segmenting and labeling sequence data[A].Proc of the 18th ICML[C].San Francisco:Morgan Kaufmann,USA:2001.282-289.
  • 6Andrew McCallum,Wei Li.Early results for named entity recognition with conditional random fields,feature induction and Web-enhanced lexicons[A].Proc of the 7th CoNLL[C].Edmonton,Canada:Morgan Kaufmann,2003.188-191.
  • 7Thorsten Brants.Cascaded Markov models[A].Proc of EACL'99[C].Bergen,Norway:European Chapter of the Association for Computational Linguistics,1999.118-125.
  • 8M Skounakis,M Craven,S Ray.Hierarchical hidden markov models for information extraction[A].Proc of the 18th International Joint Conference on Artificial Intelligence[C].Acapulco,Mexico:Morgan Kaufmann,2003.427-433.
  • 9Eric Brill.Transformation based error driven learning and natural language processing:A case study in part of speech tagging[J].Computational Linguistics,1995,21(4):543-566.
  • 10Aron Culotta,Andrew McCallum.Confidence estimation for information extraction[A].Proc of HLT-NAACL'04[C].Boston,Massachusetts:Association for Computational Linguistics,2004.109-112.

共引文献192

同被引文献67

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部