期刊文献+

基于CRF的百科全书文本段落划分 被引量:3

Encyclopedia Text Topic Segmentation Based on CRF
在线阅读 下载PDF
导出
摘要 CRF模型是标注、切分序列数据的较新的概率模型,在信息抽取等文本处理领域广受关注。该文介绍了CRF方法,并将其应用到百科全书文本段落的划分上,利用CRF的特征表述机制加入了文本单元序列中的长距离约束,取得了比传统的隐马尔科夫方法更好的结果。 Conditional random field(CRF) is a newly proposed probabilistic model for segmenting and labeling sequence data, and has been successfully applied to many natural language processing tasks and information extraction. This paper introduces CRF model and applies it in encyclopedia text topic segmentation. With its long distance overlapping feature mechanism, the CRF model shows better performance than traditional HMM model on encyclopedia text segmentation task.
作者 许勇 宋柔
出处 《计算机工程》 CAS CSCD 北大核心 2007年第10期16-18,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60272055) 国家"863"计划基金资助项目(2001AA110372-1)
关键词 文本段落划分 条件随机域模型 隐马尔科夫模型 Topic segmentation Conditional random fields(CRF) Hidden Markov model(HMM)
  • 相关文献

参考文献5

  • 1Lafferty J,Callum A,Pereira F.Conditional Random Fields:Probabilistic Models for Segmenting and Labeling Sequence Data[C]//Proceedings of the International Conference on Machine Learning.2001.
  • 2Hearst M A.Multi-paragraph Segmentation of Expository Text[C]//Proceedings of the 32nd Meeting of the Association for Comput-ational Linguistics.1994.
  • 3Sha F,Pereira F.Shallow Parsing with Conditional Random Fields[C]//Proceedings of HLT-NAACL.2003.
  • 4Callum A,Freitag D,Pereira F.Maximum Entropy Markov Models for Information Extraction and Segmentation[C]//Proc.of ICML'00.2000.
  • 5Yamron J,Carp I,Gillick L,et al.A Hidden Markov Model Approach to Text Segmentation and Event Tracking[C]//Proceedings of the IEEE ICASSP.1998.

同被引文献29

  • 1杨浩生.飞腾和PageMaker的PS文件之异同[J].印刷杂志,2004(10):45-46. 被引量:2
  • 2周俊生,戴新宇,尹存燕,陈家骏.基于层叠条件随机场模型的中文机构名自动识别[J].电子学报,2006,34(5):804-809. 被引量:115
  • 3刘挺,车万翔,李生.基于最大熵分类器的语义角色标注[J].软件学报,2007,18(3):565-573. 被引量:73
  • 4Pietra S D,Pietra V D,Lafferty J.Inducing Features of Random Fields[J].IEEE Trans.on Pattern Analysis & Machine Intelligence,1997,19(4):380-393.
  • 5Lafferty J,Callum A,Pereira F.Conditional Random Fields:Probabilistic Models for Segmenting and Labeling Sequence Data[C]//Proceeding-s the International Conference on MachineLearning.2001.
  • 6Hearst M A.Multi-paragraph Segmentation of Expository Text[C]//Proceedings of the 32nd Meeting of the Association for Comput-ational Linguistics.1994.
  • 7于江德,樊孝忠,庞文博,余正涛.Semantic role labeling based on conditional random fields[J].Journal of Southeast University(English Edition),2007,23(3):361-364. 被引量:9
  • 8Peng F, McCallum A. Information extraction from research papers using conditional randomfields [ J ]. Information Processing & Management, 2006, 42 (4) : 963-979.
  • 9Hearst M A. Multi-paragraph segmentation of expository text[ C]//Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics, Las Cruces, New Mexico. Association for Computational Linguistics, 1994 : 9-16.
  • 10Seymore K, McCallum A, Rosenfeld R. Learning hidden Markov model structure for information extraction [ C ]// AAAI-99 Workshop on Machine Learning for Information Extraction, AAAI Press, 1999:37-42.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部