期刊文献+

基于聚类分析的增强型蚁群算法 被引量:6

Enhanced ant colony optimization algorithm based on clustering analysis
原文传递
导出
摘要 针对蚁群算法存在的早熟收敛、搜索时间长等不足,提出一种增强型蚁群算法.该算法构建了一优解池,保存到当前迭代为止获得的若干优解,并提出一种基于邻域的聚类算法,通过对优解池中的元素聚类,捕获不同的优解分布区域.该算法交替使用不同簇中的优解更新信息素,兼顾考虑了搜索的强化性和分散性.针对典型的旅行商问题进行仿真实验,结果表明该算法获得的解质量高于已有的蚁群算法. Due to the shortcomings of ant colony optimization(ACO) algorithm,such as premature convergence and exorbitantly long computation time,an enhanced ACO algorithm is proposed.It constructs a good solution pool which holds a certain number of best solutions found so far.These solutions are clustered by a developed neighbourhood-based clustering algorithm,and accordingly some different regions which contain good solutions can be captured.The proposed ACO algorithm alternately employs the good solutions belonging to different clusters to update pheromone.By this means,both the intensification and the diversification of search are consulted.Simulation experiment is conducted on typical travelling salesman problems.The results show that,the presented algorithm is more efficient in generating high-quality solutions.
出处 《控制与决策》 EI CSCD 北大核心 2010年第8期1201-1206,共6页 Control and Decision
基金 国家自然科学基金项目(60875043 60905044) 国家973计划项目(2007CB311006)
关键词 蚁群算法 早熟收敛 聚类分析 Ant colony optimization algorithm Premature convergence Clustering analysis
  • 相关文献

参考文献12

  • 1Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents[J]. IEEE Trans on Systems, Man and Cybernetics, 1996, 26(1): 29- 41.
  • 2Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the traveling salesman problem[J]. IEEE Trans on Evolutionary Computation, 1997, 1(1): 53-66.
  • 3Sttltzle T, Hoos H H. Max-rain ant system[J]. Future Generation Computer Systems, 2000, 16(9): 889-914.
  • 4Blum C, Dorigo M. The hyper-cube framework for ant colony optimization[J]. IEEE Trans on Systems, Man and Cybernetics, 2004, 34(2): 1161-1172.
  • 5Borkar V S, Das D. A novel ACO algorithm for optimization via reinforcement and initial bias[J]. Swarm Intelligence, 2009, 3(1): 3-34.
  • 6黄国锐,曹先彬,王煦法.基于信息素扩散的蚁群算法[J].电子学报,2004,32(5):865-868. 被引量:76
  • 7柯良军,冯祖仁,冯远静.有限级信息素蚁群算法[J].自动化学报,2006,32(2):296-303. 被引量:17
  • 8张晓霞,唐立新.一种求解TSP问题的ACO&SS算法设计[J].控制与决策,2008,23(7):762-766. 被引量:16
  • 9Parkes A J. Clustering at the phase transition[C]. Proc of the 14th National Conf on Artificial Intelligence. Providence: AAAI Press, 1997: 340-345.
  • 10Mezard M, Mora T, Ze.cchina R. Clustering of solutions in the random satisfiability problem[J]. Physical Review Letters, 2005, 94(19): 1-4.

二级参考文献29

  • 1丁建立,陈增强,袁著祉.遗传算法与蚂蚁算法融合的马尔可夫收敛性分析[J].自动化学报,2004,30(4):629-634. 被引量:32
  • 2Talbi E -G, Roux O, Fonlupt C, Robilliard D. Parallel ant colonies for the quadratic assignment problem[J]. Future Generation Computer System , 2001,17 (4) : 441 -- 449.
  • 3Yu I K, Song Y H. A novel short-term generation scheduling technique of thermal units using ant colony search algorithms[J]. International Journal of Electrical Power and Energy Systems, 2001, 26(6): 471--479.
  • 4McMullen Patrick R. An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives[J]. Artificial Intelligence in Engineering, 2001, 15(3): 309--317.
  • 5Gamez Jose A, Puerta Jose M. Searching for the best elimination sequence in Bayesian networks by using ant colony optimization. Pattern Recognition Letters, 2002, 23 (1) : 261 -- 277.
  • 6Dorigo Marco, Bonabeau Eric, Theraulaz Guy. Ant algorithms and stigmergy[J]. Future Generation Computer System, 2000,16(8): 851--871.
  • 7Stutzle Thomas, Hoos Holger H. MAX-MIN ant system[J]. Future Generation Computer System, 2000,16(8) : 889--914.
  • 8Dorigo Marco, Gambardella, Luca Maria. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans on Evolutionary Computation, 1997, 1 (1) : 53-- 66.
  • 9Dorigo Marco, Gambardella Luca Maria. Ant colonies for the traveling salesman problem[J]. Biosystems, 1997, 43(2) : 73--81.
  • 10Dorigo M,et al.Ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B,1996,26(1):29-41.

共引文献115

同被引文献49

引证文献6

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部