期刊文献+

基于信息素扩散的蚁群算法 被引量:76

An ANT Colony Optimization Algorithm Based on Pheromone Diffusion
在线阅读 下载PDF
导出
摘要 蚁群算法是一种新型的搜索算法 ,其模拟的是蚁群依赖信息素进行通信而表现出的社会性行为 .在基本蚁群算法中 ,蚂蚁之间协作不足 ,存在滞后的缺陷 .本文在分析这一算法的基础上 ,提出了一种新的更加忠实了真实蚁群信息系统的蚁群算法 .该算法通过建立信息素扩散模型 ,使相距较近的蚂蚁之间能更好地进行协作 .TSP问题的仿真结果表明了该算法的有效性 . Ant Colony Optimization (ACO) Algorithm is a novel search algorithm which simulates the social behavior of ant colony depending on pheromone′s communication.Based on the analysis of shortcomings of basic ACO such as lack and lag of collaboration among ants,this paper proposes a new ACO which is more faithful to real ant colony system.By setting up the pheromone diffusion model,this algorithm improves the collaboration among ants which are nearby.The simulation results for TSP problem show the validity of it.
出处 《电子学报》 EI CAS CSCD 北大核心 2004年第5期865-868,共4页 Acta Electronica Sinica
基金 国家自然科学基金 (No .60 2 0 4 0 0 9)
关键词 蚁群算法 蚁群系统 信息素 扩散机制 ant colony optimization algorithm ant colony system pheromone diffusion mechanism
  • 相关文献

参考文献5

  • 1Dorigo M,et al.Ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B,1996,26(1):29-41.
  • 2Dorigo M,Gambardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
  • 3Dorigo M,et al.vip editorial:special section on ant colony optimization[J].IEEE Transactions on Evolutionary Computation,2002,6(4):317-319.
  • 4Gambardella L M,Dorigo M.Solving symmetric and asymmetric TSPs by ant colonies[A].Proc.of the 1996 IEEE International Conference on Evolutionary Computation[C].Nagoya,Japan:ICEC'96,1996.622-627.
  • 5吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法[J].计算机研究与发展,1999,36(10):1240-1245. 被引量:310

二级参考文献1

  • 1Daniel Costa,Alain Hertz,Clivier Dubuis. Embedding a sequential procedure within an evolutionary algorithm for coloring problems in graphs[J] 1995,Journal of Heuristics(1):105~128

共引文献309

同被引文献737

引证文献76

二级引证文献532

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部