期刊文献+

基于SOM-DB-PAM混合聚类算法的电力客户细分 被引量:6

Power Customer Segmentation Based on SOM-DB-PAM Hybrid Clustering Algorithm
在线阅读 下载PDF
导出
摘要 针对电力客户具有客户数量大、存在孤立点等特点,提出一种适用于对大量电力客户进行快速聚类的SOM-DB-PAM混合聚类算法。该算法利用自组织映射神经网络训练输入数据,以获取代表输入模式且数据量远小于输入数据量的原型向量,使用围绕中心点的切分(PAM)对该原型向量聚类并用Davies-Bouldin指标判定最优聚类个数以保证聚类效果。实验结果表明,与传统聚类算法相比,该算法具有更高的分类正确率,当客户数量较大时,能实现对客户的快速、有效聚类,并减少人为指定聚类个数的盲目性和主观性。 Based on power customers which reach a very large amount and the feature of presence of outlier,and limitations of Partitioning Around Medoid(PAM)algorithm in handling large amounts of data and predefining the number of clusters,a new hybrid clustering algorithm called SOM-DB-PAM that is suitable for fast clustering of large number of electricity customers,is proposed.In the proposed algorithm,the Self-Organizing Map(SOM)neural network is used to train input data to find prototype vectors that represents patterns of the input data set but far less than the number of it,and the prototype vectors are clustered by the PAM algorithm and to ensure the validity of clustering,the Davies-Bouldin(DB)indexis calculated for SOM prototype vectors to solve optimal number of clusters.Experimental results show that,compared with traditional clustering algorithms,the accuracy of classification is enhanced and when the amount of electricity customers is large,the proposed algorithm can achieve a fast and effective clustering.In addition,the blindness and subjectivity of predefining the number of clusters artificially is decreased.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第10期295-301,308,共8页 Computer Engineering
基金 国家教育部博士点基金资助项目(20116102110036)
关键词 电力客户细分 围绕中心点的划分 自组织映射 混合聚类算法 聚类分析 power customer segmentation Partitioning Around Medoid(PAM) Self-Organizing Map(SOM) hybrid clustering algorithm clustering analysis
  • 相关文献

参考文献18

  • 1Smith W R.Product Differentiation and Market Segmentation as an Alternative Marketing Strategy[J].Journal of Marketing,1956,21(1):3-8.
  • 2Floh A,Zauner A,Koller M,et al.Customer Segmentation Using Unobserved Heterogeneity in the Perceived-value-loyalty-intentions Link[J].Journal of Business Research,2014,67(5):974-982.
  • 3威廉·G·齐克蒙德,小雷蒙德·迈克利奥德,法耶·W·吉尔伯特.客户关系管理:营销战略与信息技术的整合[M].北京:中国人民大学出版社,2005.
  • 4López J J,Aguado J A,Martín F,et al.Hopfield-KMeans Clustering Algorithm:A Proposal for the Segmentation of Electricity Customers[J].Electric Power Systems Research,2011,81(1):716-724.
  • 5徐天池.基于数据挖掘的电网客户细分系统设计与实现[D].中山大学,2013.
  • 6王松涛.市场条件下的电力客户价值分析体系[J].电网技术,2010,34(2):155-158. 被引量:20
  • 7李泓泽,郭森,王宝.基于遗传改进蚁群聚类算法的电力客户价值评价[J].电网技术,2012,36(12):256-261. 被引量:31
  • 8曾鸣,杨素萍,杨鹏举,唐健,田廓.社会节能环境下电力客户价值评估研究[J].华东电力,2008,36(6):15-19. 被引量:16
  • 9Wind Y.Issues and Advances in Segmentation Research[J].Journal of Marketing Research,1978,15(1):317-337.
  • 10蒋维杨.电力客户价值评价及信息系统开发研究[D].西安:西北工业大学,2010.

二级参考文献32

共引文献58

同被引文献72

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部