期刊文献+

一种基于改进聚类算法的模糊模型辨识 被引量:9

A Fuzzy Identification Based on Improved Clustering Algorithm
在线阅读 下载PDF
导出
摘要 传统建模方法对于建立精确的存在多变量、强耦合、大时滞以及不确定性的非线性系统模型无能为力,从而难于精确表达复杂系统及实施整体优化控制.针对传统模糊C-均值聚类算法对初始值敏感及无法确定最优规则数的缺陷,提出了一种基于改进聚类算法的模糊辨识方法.它通过减法聚类和有效性函数确定初始聚类中心,然后采用一种全局模糊C-均值聚类算法寻找出最终聚类中心,并利用最近临域法确定合适的区域半径,最后通过递推最小二乘法建立系统的T-S模糊模型,对电阻炉温度系统进行仿真,说明本文所述方法的有效性. The traditional modeling methods are unable to identify a nonlinear system which has multivariables randomicity,strong coupling and long delay.Thus,it is difficult to express complex system and implement the whole optimal control.A kind of method of fuzzy identification based on improving clustering algorithm is proposed in connection with the traditional Fuzzy C-Means clustering algorithm's defects which were sensitive to the initial value and unable to determine the optimum rule numbers.The initial clustering centers are decided by the subtractive clustering and the validity function,and the final clustering centers are found by a global Fuzzy C-Means clustering algorithm,and then a closest adjacent area method is used to determine the suitable area radius,and finally the T-S model is built with weighted recursive least-square algorithm.In this paper,the simulation of a temerapure system of resistance furnace can illustrate that the method is accurate and effective.
作者 武俊峰 艾岭
出处 《哈尔滨理工大学学报》 CAS 北大核心 2010年第3期1-5,共5页 Journal of Harbin University of Science and Technology
基金 教育部科学技术研究重点项目(206041) 教育部高校博士点专项研究基金项目(20060214004) 哈尔滨市科技攻关计划项目(20051AA1CG037)
关键词 模糊C-均值聚类 T-S模型 模糊辨识 温度控制系统 电阻炉 FCM T-S model fuzzy identification temperature control system resistance furnace
  • 相关文献

参考文献12

  • 1ZADEH L.A. Fuzzy Sets[J]. Information and Control,1965:338 - 353.
  • 2TAKAGI T, SUGENO M. Fuzzy Identification of System and its Application to Modeling and Control [ J ]. IEEE Traps. System, man and Cybern, 1985,15:112 - 116.
  • 3BEZDEK J C. Cluster Validity With Fuzzy Sets[J]. J. Cybernet. 1974(3 ) :58 -74.
  • 4宋清昆,郝敏.一种改进的模糊C均值聚类算法[J].哈尔滨理工大学学报,2007,12(4):8-10. 被引量:26
  • 5BEZDEK J C, HATHAWAY R. Recent Convergence Results for the Fuzzy C-means: Counterexamples and Repairs [ J 3. IEEE Trans. PAMI,1987,17(5) :873 -877.
  • 6张栒,邓辉文.基于减法聚类与聚类有效性评判的FCM聚类[J].重庆工学院学报,2006,20(5):59-62. 被引量:10
  • 7裴继红,范九伦,谢维信.聚类中心的初始化方法[J].电子科学学刊,1999,21(3):320-325. 被引量:42
  • 8NIKHIL R Pal. Debrup Chakraborty. Mountion and Subtraetive Clustering Method : Improvements and generaliz-ations [ J ]. International Journal of Intelligent Systems, 2000,15 (4) :329 -341.
  • 9JIAN Yu. General C-Means Clustering Model[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,8 (27) : 1197 - 1211.
  • 10王威娜.改进的模糊C-均值聚类算法[D].大连海事大学,2006.

二级参考文献37

共引文献103

同被引文献66

引证文献9

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部