期刊文献+

一种改进聚类算法在入侵检测中的应用 被引量:1

The Application of An Improved Clustering Algorithm in Intrusion Detection
在线阅读 下载PDF
导出
摘要 本文首先介绍入侵检测系统的基本结构和研究情况,然后介绍了K-means聚类算法的目标函数、算法流程;在总结K-means聚类算法存在的问题的基础上,提出了一种改进的聚类算法。该算法为基于数据挖掘的入侵检测的设计提供了相关可操作的理论依据。最后,通过模拟实验,证明了改进算法的有效性。 In this paper, the basic structure and research situation of intrusion detection system are introduced firstly, and then the objective function and procedure of the K-means clustering algorithm are presented. Based on the summarized problems of K-means clustering algorithm, an improved clustering algorithm is proposed. The algorithm provides a related operable theoretical basis for intrusion detection design based on data mining. The simulated experiments prove the validity of the improved algorithm.
出处 《信息安全与技术》 2012年第12期15-19,共5页
基金 国家科技重大专项(2012ZX03002011)资助
关键词 数据挖掘 入侵检测 聚类算法 data mining intrusion detection clustering algorithm
  • 相关文献

参考文献9

  • 1Anil K J. Data clustering:50 years beyond K-Means[J].Pattern Recognition Letters,2010,(08):651-666.
  • 2Huang Z. Extensions to the K-means A lgorithm for C lustering Large Data Sets with Categorical Values[J].Data Mining and Knowledge Discovery,1998.283-304.
  • 3Zhang Y F;Mao J L.An efficient clustering algorithm[A]陕西西安,20032-5.
  • 4Mahajan M,Nimbor P,Varadarajan K. The planar K-means problem is NP-hard[J].Lecture Notes in Computer Science,2009,(5431):274-285.
  • 5Aloise D,Deshpande A,Hansen P. NP-hardness of Euclidean sum-of-squares clustering[J].Machine Learning,2009,(02):245-248.
  • 6Krishma K,Murty M N. Genetic K-means algorithm[J].IEEE Trans on System:Man and Cybernetics Part B,1999,(03):433-439.
  • 7Jain A K,Dubes R C. Algorithns for clustering data[M].NJ,USA:Prentice-Hall Inc,Upper saddle River,1998.320.
  • 8Ramze R M,Ixlieveldt B P,Reiber J H. A new cluster validity index for the fuzzy K-means[J].Pattem RecognitionsLetters,1998.237-246.
  • 9pena J M,Larranaga P. An empirical comparison of four initialization methods for the K-means algorithm[J].Pattern Recognition Letters,1999,(20):1027-1040.

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部