期刊文献+

PSO-BP组合人工神经网络算法研究 被引量:2

Research of PSO-BP Combined Artificial Neural Network Method
在线阅读 下载PDF
导出
摘要 基于梯度下降的BP人工神经网络应用广泛,但网络目标函数误差曲面极其复杂,网络初始值的选取对网络训练结果影响很大,导致收敛速度慢,容易陷入局部极小等问题.基于粒子群算法(pso)的训练方法能够摆脱陷入局部最优的困扰,但粒子群算法局部搜索能力不够,影响网络的训练效果,在充分研究两种算法特点的基础上,提出一种新的组合训练方法,建立了PSO-BP组合人工神经网络模型. BP artificial neural network based on gradient algorithm method is widely applied,but because the error surface of object function is extramly complex and the choose of initial value effects network training results,convergence rate is slow and local minimum is likely to fall into.Paticle swarm optimization algorithm has better global searching ability to get rid the puzzles of falling into local minimum.By adequately studying on the two algorithms' characteristics,a new type of combined artificial neural network training method is put forward,and PSO-BP ann model is successfully built.
作者 高峰
出处 《山西大同大学学报(自然科学版)》 2010年第3期66-69,共4页 Journal of Shanxi Datong University(Natural Science Edition)
关键词 组合人工神经网络 BP算法 PSO算法 算法设计 combined artificial neural network bp algorithm pso algorithm algorithm design
  • 相关文献

参考文献2

二级参考文献8

  • 1Kennedy J, Eberhart R. Particle swarm optimization [A]. Proc of Int'l Conf on Neural Networks [C]. Piscataway: IEEE Press, 1995. 1942-1948.
  • 2Eberhart R, Kennedy J. A new optimizer using particle swarm theory [A]. Proc of Int'l Symposium on Micro Machine and Human Science [C]. Piscataway: IEEE Service Center, 1995. 39-43.
  • 3Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [A].In: Furuhashi T,Mckay B,eds. Proc Congress on Evolutionary Computation [C]. Piscataway: IEEE Press, 2001.
  • 4Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimiser with breeding and subpopulations [A]. In: Spector L,eds. Proc of Genetic and Evolutionary Computation Conference [C]. San Fransisco: Morgan Kaufmann Publishers Inc, 2001. 469-476.
  • 5Carlisle A, Dozier G. Adapting particle swarm optimization to dynamic environments [A]. In: Arabnia H R,eds. Proc of Int'l Conf on Artificial Intelligence [C]. Las Vegas: CSREA Press, 2000. 429-434.
  • 6Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems [A]. In: Panda B,eds. Proc of ACM Symposium on Applied Computing [C]. Boston: ACM Press, 2002. 603-607.
  • 7Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73.
  • 8李爱国,覃征,鲍复民,贺升平.粒子群优化算法[J].计算机工程与应用,2002,38(21):1-3. 被引量:317

共引文献397

同被引文献14

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部