期刊文献+

基于IPSO算法的减振器优化 被引量:3

IPSO algorithm for optimization of shock absorber
在线阅读 下载PDF
导出
摘要 提出将一种改进的粒子群优化算法应用于汽车减振器的优化中。该算法在标准粒子群算法的基础上引入了一个概率参数,使得粒子群优化算法的全局优化能力和收敛速度得到显著改善,并利用该算法对汽车减振器的主要参数进行了优化。结果表明,对减振器参数优化后,明显改善了汽车减振器压缩行程和复原行程的阻尼特性,提高了汽车的平顺性。 Based on the study of the performance of automotive shock absorber,an Improved Particle Swarm Optimization(IPSO)algorithm for automotive shock absorber optimization is proposed.This algorithm introduces a probability parameter into the standard PSO algorithm,thus significantly improves the global optimization and convergent rate in comparison with standard PSO.Using this IPSO algorithm,the main parameters of automotive shock absorber are optimized.Results show that this method can significantly improve the damping performance of automotive shock absorber in compression and recovery processes and the ride comfort performance.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第2期341-345,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(50475011)
关键词 车辆工程 减振器 IPSO算法 SPSO算法 参数优化 vehicle engineering shock absorber IPSO algorithm SPSO algorithm parameter optimization
  • 相关文献

参考文献11

二级参考文献31

共引文献78

同被引文献33

  • 1Alkhatib R, Nakhaie Jazar G, Golnaraghi M F. Optimal design of passive linear suspension using genetic algo-rithm [ J ]. Journal of Sound and Vibration, 2004,275 : 665 - 691.
  • 2Shokry A, Espun A. Sequential dynamic optimization of complex nonlinear processes based on kriging surrogate models [ J ]. Procedia Technology, 2014,15:376 - 387.
  • 3Gaspar B, Teixeira A P, Guedes-Soares C. Assessment of the efficiency of Kriging surrogate models for structu- ral reliability analysis [ J ]. Probabilistic Engineering Me- chanics, 2014,37:24 - 34.
  • 4Park J, Lee K S, Kim M S, et al. Numerical analysis of a dual-fueled CI (compression ignition) engine using Latin hypercube sampling and multi-objective Pareto op- timization[ J]. Energy, 2014,70:278 - 287.
  • 5Liu Yang, Li Yan, Wang Dejun, et al. Model updating of complex structures using the combination of compo- nent mode synthesis and kriging predictor[ J ]. The Sci- entific World Journal, 2014,208 : 1 - 13.
  • 6Esen I, Ko9 M A. Optimization of a passive vibration absorber for a barrel using the genetic algorithm [ J ]. Expert Systems with Applications, 2015,42 ( 2 ) : 894 - 905.
  • 7Murugan P, Kannan S, Baskar S. NSGA-II algorithm for multi-objective generation expansion planning prob- lem [ J ]. Electric Power Systems Research, 2009,79 (4) :622 -628.
  • 8张俊红,倪广健,郑勇,张建平.基于BP神经网络的柴油机轴系扭振减振器优化设计[J].内燃机学报,2008,26(1):83-86. 被引量:11
  • 9韩德宝,宋希庚,薛冬新.橡胶减振器非线性动态特性的试验研究[J].振动工程学报,2008,21(1):102-106. 被引量:36
  • 10窦同水,唐功友.基于内模原理的汽车主动悬挂系统的减振控制[J].中国海洋大学学报(自然科学版),2011,41(1):165-168. 被引量:2

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部