期刊文献+

动态贝叶斯网络在水文预报中的应用 被引量:9

Application of dynamic Bayesian networks in hydrologic forecast
在线阅读 下载PDF
导出
摘要 贝叶斯网络是目前人工智能中不确定知识与推理中最有效的理论模型之一。提出一种基于动态贝叶斯网络模型理论的水文预报方法。在综合考虑降雨径流成因的基础上,利用领域专家知识构建网络模型,在已有降雨、流量数据的基础上通过计算变量间的条件概率来计算流量发生的可能性。最后,通过渭河流域咸阳至临潼段历时数据进行仿真实验,对仿真结果和该模型进行了分析。 Bayesian network is one of the most efficient models in the uncertain knowledge and reasoning field.A rainfall-runoff prediction model based on dynamic Bayesian network is put forward in this paper.The network model is based on knowledge of the field experts and the causes of rainfall-runoff, they can produce the probability of the flow rate by calculating the conditional probability among variables on the basis of historical rainfall and runoff data.Finally through the simulation of historical data about Wei He river basin from Xianyang gauge station to Lintong gauge station,the model and the results are analyzed.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第6期231-234,共4页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)(No.2006AA01A126) 国家自然科学基金(No.50279041)~~
关键词 贝叶斯网络 动态贝叶斯网络 水文预报 数据挖掘 高阶马尔科夫链 Bayesian network dynamic Bayesian network hydrologic forecast data mining higher-order Markov
  • 相关文献

参考文献5

  • 1Russell S,Norvig P,姜哲,金奕江,张敏,等译.人工智能-一种现代方法[M]:2版.北京:人民邮电出版社,2004.378.
  • 2Murphy K P.Dynamic Bayesian networks :representation,inference and learning[D].UC Berkeley, Computer Science Division, 2002 : 14-15.
  • 3林士敏,田凤占,陆玉昌.贝叶斯网络的建造及其在数据采掘中的应用[J].清华大学学报(自然科学版),2001,41(1):49-52. 被引量:66
  • 4王辉.用于预测的贝叶斯网络[J].东北师大学报(自然科学版),2002,34(1):9-14. 被引量:35
  • 5Luis G,Probabilistic forecasts using Bayesian networks calibrated with deterministic rainfall-runoff models [M]//Vasiliev O F.Extreme Hydrological Event: New Concepts for Security.[S.l.]: Springer, 2007 : 173-183.

二级参考文献12

  • 1[1]Heckerman D. Bayesian networks for data mining [J]. Data Mining and Knowledge Discovery, 1997, 1: 79~119.
  • 2[2]Heckerman D, Geiger D, Chickering D. Learning Bayesian Networks: the combination of knowledge and statistical data [J]. Machine Learning, 1995, 20: 196~243.
  • 3[3]Geiger D, Heckerman D. A characterization of the Dirichlet distribution with applicable to learning Bayesian networks [A]. In Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence [C]. Montreal, QU, 1995. 196~207.
  • 4[4]Cooper G, Herskovits E. A Bayesian method for the induction of probabilistic networks from data [J]. Machine Learning, 1992, 9: 309~347.
  • 5[5]Dagum P, Luby M. Approximating probabilistic inference in Bayesian belief networks is NP-hard [J]. Artificial Intelligence, 1993, 60: 141~153.
  • 6[6]Chickering D. Learning equivalence classes of Bayesian-network structures [A]. In Proceedings of Twelfth Conference on Uncertainty in Artificial Intelligence [C]. Portland, OR: Morgan Kaufmann, 1996.
  • 7[7]Heckerman D, Mamdani A, Wellman M. Real-world applications of Bayesian networks [J]. Communications of the ACM, 1995, 38 (3): 24~26.
  • 8[8]Sewell W, Shah V. Social class, parental encouragement, and educational aspirations [J]. American Journal of Sociology, 1968, 73: 559~572.
  • 9[9]Spirtes P, Glymour C, Scheines R. Causation, Predication, and Search [M]. New York: Springer-Verlag, 1993.
  • 10[10]Cheeseman P, Stutz J. Bayesian classification (AutoClass): Theory and results [A]. Fayyad U, Piatesky-Shapiro G, Smyth P, et al (Eds.). Advances in Knowledge Discovery and Data Mining [C]. Menlo Park, CA: AAAI Press, 1995.

共引文献95

同被引文献72

引证文献9

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部