期刊文献+

贝叶斯网络分类器稳定性研究 被引量:2

STUDY OF THE STABILITY OF BAYESIAN NETWORK CLASSIFIER
原文传递
导出
摘要 稳定性是评估分类算法的一个重要方面.本文介绍了贝叶斯分类方法以及两种度量算法稳定性的方法,实验研究了几种流行的分类算法的稳定性.研究的目的是确定树增强的朴素贝叶斯网络分类方法的稳定性.实验结果表明,树增强的朴素贝叶斯网络分类方法是稳定的. The stability is an important criterion of evaluating classification algorithms. Bayesian network classification method and TAN model arc firstly introduced in this paper. An empirical investigation, which compares the stability of several typical classification approaches(decision tree, Naive Bayes)with TAN by utilizing two measure methods, is detailedly described. The purpose of the study is to determine the stability of the TAN classifier. Experimental results show that Tree Augmented Naive Bayes network classifier is stable.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2004年第3期275-280,共6页 Pattern Recognition and Artificial Intelligence
关键词 贝叶斯网络 稳定性 差异 Bayesian Network Stability Variance
  • 相关文献

参考文献17

  • 1Turney P. Technical Note: Bias and the Quantification of Stability. Machine Learning, 1995, 20(1-2): 23-33
  • 2Last M, Maimon O, Minkov E. Improving Stability of Decision Tree. Pattern Recognition and Artificial Intelligence, 2002, 16(2) : 145 - 159
  • 3Quinlan J R. Bagging, Boosting, and C4.5. In: Rachel B E, ed. Proc of the 13th National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 1996, 725 - 730
  • 4Bauer E, Kohavi R. An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Machine Learning, 1999, 36(1-2): 105-139
  • 5Breiman L. Bagging Predictors. Machine Learning, 1996, 24(2):123- 140
  • 6Friedman N, Geiger D, Goldsmfidt M. Bayesian Network Classitiers. Machine Learning, 1997, 29(2-3); 131 - 163
  • 7Keogh E J, Pazzani M J. Learning Augmented Bayesian Classifiers: A Comparison of Distribution-Based and Classification-Based Approaches. In: Heckerman D, Whittaker J, eds. Proc of the 7th International Workshop on Artificial Intelligence and Statistics. San Francisco: Morgan Kaufmann, 1999, 225-230
  • 8Cheng J, Greiner R, Kelly J, Bell D, Liu W. Learning Belief Networks from Data: An Information Theory Based Approach. Artificial Intelligence, 2002, 137(1-2): 43-90
  • 9Cheng J, Greiner R. Comparing Bayesian Network Classifiers. In: Laskey K B, Prade H, eds. Proc of the 15th Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kanfmann, 1999, 101 - 108
  • 10Pearl J. Probabilistie Reasoning in Intelligent Systems: Networks of Plausible Inference. San Francisco: Morgan Kanfman, 1998

同被引文献21

  • 1朱晓峰.生命周期方法论[J].科学学研究,2004,22(6):566-571. 被引量:84
  • 2田晓瑞,Douglas J Mcrae,张有慧.森林火险等级预报系统评述[J].世界林业研究,2006,19(2):39-46. 被引量:55
  • 3潘定,沈钧毅.时态数据挖掘的相似性发现技术[J].软件学报,2007,18(2):246-258. 被引量:41
  • 4Vijay Srinivasan. An integration framework for product lifecycle management[J]. Computeraided design, 2008, 43(5): 464-478.
  • 5Yuan, Yanni, SOA-Based Telecom Product Management System Framework[J]. Research and Prac- tical Issues of Enterprise Information Systems, 2008(2): 1251-1260.
  • 6Michael G. Madden, On the classification performance of TAN and general Bayesian networks[J]. Knowledge-Based Systems, 2009(22): 489-495.
  • 7Pearce G, Jackson J. Experiencing the Product Life Cycle Management Highs and Lows Through Dramatic Simulation[J]. Journal of Marketing Education, 2009(12): 212-218.
  • 8Ozgur Baskan, Soner Haldenbilen. A new solution algorithm for improving performance of ant colony optimization[J]. Journal of Applied Mathematics and Computation, 2011, 211: 75-84.
  • 9Junzhong Ji, Renbing Hu. A hybrid method for learning Bayesian networks based on ant colony optimization[J]. Jqurnal of Applied Soft Computing, 2011(11): 3373-3384.
  • 10Edimilson B, Santosa Estevam R. Hruschka, Bayesian network classifiers: Beyond classification accuracy[J]. Intelligent Data Analysis, 2011(15): 279-298.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部