期刊文献+

基于动态贝叶斯网络的船舶溢油风险预报 被引量:12

Dynamic Bayesian Network-based Prediction of Ship Oil Spill Risk
原文传递
导出
摘要 为有效管理海洋环境污染,需要识别船舶溢油风险(SOSR)因素,并研究其对事故后果影响的动态特性。在辨识SOSR的基础上,构建危险源网络图,并考虑其动态性。建立动态贝叶斯网络(DBN)预报模型。运用该模型,量化SOSR因素与溢油事故的可能性和后果之间的逻辑组合关系,推理风险变量的后验概率,并获取风险因素时间状态转移效果和溢油事故与事故后果的时序变化规律。以某港口1999—2012年间船舶溢油事故数据为基础,运用模型分析表明:船舶溢油事故风险波动性很强,重大溢油事故的风险现阶段不稳定性突出,相对风险值为-41%~53%,溢油事故有扩散性和自繁衍特征。 It is held by authors that in order to manage marine pollution effectively, the factors affecting SOSR should be analyzed, the dynamic characteristics of factors and consequences of accidents should be studied. A hazards network diagram of SOSR was drawn after identification of factors for ship oil spill. A DBN prediction model of SOSR(SOSR-DBN) was built after considering the dynamic character. Quantitative logic relations between possibilities and consequences of risk factors and accidents of ship spill can be measured using the model. Then, posterior probability of risk variables can be reasoned, time state transition effect of risk factors can be obtained, and temporal variation of risk accidents and consequence of accident can be obtained as well. The model was used to analyze the ship oil spill data of a certain port area from 1999 -2012. Analysis shows that risk of ship oil spill is highly volatile, and instability of risk of ma- jor accidents is salient at present stage, and that relative risk values vary from -41% to 53%, indicating that ship oil spill has characteristics of diffusion and self-reproduction.
出处 《中国安全科学学报》 CAS CSCD 北大核心 2013年第11期53-59,共7页 China Safety Science Journal
基金 国家自然科学基金资助(51149001) 上海海事大学校基金资助(20120057) 上海海事大学研究生创新基金资助(GK2013032) 广东省交通运输厅科技项目(201202004)
关键词 水上交通 船舶溢油风险(SOSR) 动态风险评价 动态贝叶斯网络(DBN) 时序变化 maritime traffic ship oil spill risk(SOSR) dynamic bayesian network (DBN) sequential dynamic risk evaluation variation
  • 相关文献

参考文献9

二级参考文献101

共引文献144

同被引文献109

引证文献12

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部