期刊文献+

基于SVM的来波方向估计方法 被引量:5

Research on direction of arrival estimation based on SVM
在线阅读 下载PDF
导出
摘要 提出了一种采用支持向量机(support vector machine,SVM)建立模型实现来波方向估计的新方法。提取已知方向来波信号在天线阵元间感应的相位差作为模型的输入,利用支持向量回归机对复杂函数的逼近能力构建方向估计模型。充分利用了SVM的结构风险最小原则和泛化能力,使得模型对低信噪比和通道误差具有较强的适应能力。通过正弦和余弦函数变换的方法,有效解决了360°~0°转换不连续性引起的逼近误差,提高了估计精度,并给出了算法的具体实现步骤。实验结果验证了该方法的优越性和可行性。 A novel direction of arrival (DOA) estimation method, in which a model is established based on sup- port vector machine (SVM), is presented. The phase differences resulting from known direction signals among the array elements of antennas are extracted as the input of the model, and then the DOA model based on the ability of approximating to complex functions of support vector regression is constructed. The good generalization performance and structural risk minimization theory of SVM is fully utilized so that the model has a good adaptability to the condi- tion of low signal-to-noise ratio and phase errors in the channel. The approximating error is effectively solved by using the transformation of sine and cosine functions, which is caused by the incontinuous transformation from 360° to 0°. The implement process using this algorithm is given in detail. Experiment results prove that the proposed method is good and feasible and has great use in the engineering application.
作者 李鹏飞 张旻
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第11期2571-2574,2601,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(60972161)资助课题
关键词 支持向量机 来波方向 估计 support vector machine direction of arrival estimation
  • 相关文献

参考文献12

  • 1Schmidt R O. Multiple emitter location and signal parameter estimation[J]. IEEE Trans. on Antennas and Propagation, 1986,34(3) :276 - 280.
  • 2Roy R, Paulraj A, Kailath T. Direction-of-arrival estimation by subspace rotation methods-ESPRIT [ C ] // Proc. of IEEE International Conference on Acoustics, Speech ,and Signal Processing, 1986,11:2495 - 2498.
  • 3安冬,王守觉.基于仿生模式识别的DOA估计方法[J].电子与信息学报,2004,26(9):1468-1473. 被引量:11
  • 4Guo W, Qiu T S, Tang H, et al. Performance of RBF neural networks for array processing in impulsive noise environment [J]. Digital Signal Processing, 2008,18(2) : 168 - 178.
  • 5Wang Min, Yang Shuyuan, Wu Shunjun, et al. A RBFNN approach for DOA estimation of ultra wideband antenna array [J]. Neurocomputing, 2008, 71(4 - 6) :631 - 640.
  • 6严颂华,吴世才,吴雄斌.基于神经网络的高频地波雷达目标到达角估计[J].电子与信息学报,2008,30(2):339-342. 被引量:17
  • 7Vigneshwaran S, Sundararajan N, Saratchandran P. Direction of arrival (DOA) estimation under array sensor failures using a minimal resourse allocation neural network[J]. IEEE Trans. on Antennas and Propagation, 2007, 55(2) :334 - 343.
  • 8安冬,王守觉.基于仿生模式识别和PCA/ICA的DOA估计方法[J].电子学报,2004,32(9):1448-1451. 被引量:14
  • 9Vapnik V N. The nature of statistical learning theory[M]. New York : Springer-Verlag , 1995.
  • 10Vapnik V N. Statistical learning theory [M]. New York: Wiley, 1998.

二级参考文献25

  • 1王哲,李衍达,罗发龙.一种用于PCA与MCA的神经网络学习算法[J].电子学报,1996,24(4):12-16. 被引量:6
  • 2王兰美,廖桂生,王洪洋.矢量传感器误差校正与补偿[J].电子与信息学报,2006,28(1):92-95. 被引量:7
  • 3刘芬,明望,陶松.相关处理在干涉仪测向中的应用[J].电子科学技术评论,2005(6):31-33. 被引量:10
  • 4[1]Fisher.Contributions to Mathematical statistics[M].New York:J Wiley,1952.
  • 5[2]陈季镐(美).统计模式识别[M].邱炳章,邱华,译.北京:北京邮电学院出版社,1989.
  • 6[3]Vapnik and Chervonenkis.Theory of Pattern Recognition[M].Nauka:Moscow,1974.
  • 7[4]Adimir N Vapnik.统计学习理论的本质[M].张学工,译.北京:清华大学出版社,2000.
  • 8[9]斯华龄(美).智能视觉图像处理[M].上海:上海科技教育出版社,2002.
  • 9VapnikVN著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 10Fisher R A. Contributions to Mathematical Statistics[M]. New York: J. Wiley, 1952: 1-3.

共引文献35

同被引文献48

  • 1荣海娜,张葛祥,金炜东.系统辨识中支持向量机核函数及其参数的研究[J].系统仿真学报,2006,18(11):3204-3208. 被引量:80
  • 2高隽.人工神经网络原理及仿真实例[M].2版.北京:机械工业出版社,2010.
  • 3Josef S, Vladimir T. On improved estimator for interceptor guidance[C]//Proc, of the American Control Conference, 2002 :203 - 208.
  • 4Talole S E, Phadke S B. Nonlinear target estimation in homing guidance[C]// Proc. o f AIAA Navigation and Control Conference, 2002:3122 - 3130.
  • 5Vapnik V N. The nature of statistical learning theory [M]. New York: Springer Verlag, 1995.
  • 6Vapnik V N. Statistical learning theory[M]. New York: Wiley, 1998.
  • 7Vapnik V N, Golowich S. A smola support vector method for function approximation[C]//Proc, of the Neural Information Processing Systems, 1997 : 281 - 287.
  • 8Liu G P. Nonlinear identification and control : a neural network approach[M]. New York: Springer, 2001.
  • 9Rostamizadeh A. Theoretical foundations and algorithms for learning with multiple kernels[D]. New York: New York University, 2010.
  • 10Kloft M, Brefeld U, Sonnenburg S, et al. Non-sparse regularization for multiple kernel learning[R]. USA: Cornell University, 2010.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部