期刊文献+

基于特征矢量相角的RBF神经网络DOA估计 被引量:2

Study on DOA estimation based on phase-angle of eigenvector using RBF neural networks
在线阅读 下载PDF
导出
摘要 为进一步提高神经网络模型的方向估计精度,提出利用特征矢量相角作为方向特征来构建模型。该方法首先通过协方差矩阵特征分解得到不易受噪声干扰的信号特征矢量;再对该矢量提取相角,信号的方向信息就包含在该相角中,以该相角作为输入矢量来训练模型。仿真结果证明了该方法具有抗噪能力强、模型估计精度高等特点,因此具有较高的工程应用价值。 In order to get the higher precision in neural network-based DOA estimation,this paper proposed a novel approach using phase-angle of eigenvector as the direction character.This approach firstly decomposed the covariance matrix to get the phase-angle of signal eigenvector,which contained DOA information with less noise interference,so the phase-angles of eigenvector could be used as the input vectors to train RBFNN model.The simulation results show this method has more powerful anti-noise ability and higher estimation precision,etc.so it has a good engineering application value.
出处 《计算机应用研究》 CSCD 北大核心 2011年第7期2655-2657,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60972161)
关键词 特征矢量相角 方向特征 来波方位估计 径向基神经网络 phase-angle of eigenvector direction character DOA estimation RBFNN(radial basis function nearal networks)
  • 相关文献

参考文献7

二级参考文献59

  • 1杨超,邱文杰.自适应天线中阵元间互耦的校正[J].电子学报,1993,21(3):58-62. 被引量:19
  • 2王哲,李衍达,罗发龙.一种用于PCA与MCA的神经网络学习算法[J].电子学报,1996,24(4):12-16. 被引量:6
  • 3王兰美,廖桂生,王洪洋.矢量传感器误差校正与补偿[J].电子与信息学报,2006,28(1):92-95. 被引量:7
  • 4Chan A Y J, Litva J. MUSIC and maximum likelihood techniques on two-dimensional DOA estimation with uniform circular array. In: IEE Proceedings of Radar, Sonar and Navigation, vol 142(3). New York: IEEE Press, 1995. 105-114.
  • 5Kedia V S, Chandna B. A new algorithm for 2-D DOA estimation. Signal Process, 1997, 60(3): 325--332.
  • 6van der Veen A J, Ober P B, Deprettere E F. Azimuth and elevation computation in high resolution DOA estimation. IEEE Trans Signal Process, 1992, 7(40): 1828--1832.
  • 7Yin Q Y, Newcomb R, Zou L. Estimating 2-D angle of arrival via two parallel linear array. In: Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing, vol 3. New York: IEEE Press, 1989. 2803--2806.
  • 8殷勤业.高分辨率波达方向估计.博士学位论文.西安:西安交通大学.
  • 9Zoltowski M D, Haardt M, Mathews C P. Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT. IEEE Trans Signal Processing, 1996, 2(44): 316--322.
  • 10Belouchrani A, Abed-Meraim K, Cardoso J F, et al. A blind source separation technique using second-order statistics. IEEE Trans Signal Process, 1997, 2(45): 434--444.

共引文献56

同被引文献22

  • 1熊波,李国林,尚雅玲,高云剑.信号相关性与DOA估计[J].电子科技大学学报,2007,36(5):907-910. 被引量:22
  • 2Stoica P, Nehorai A. MUSIC, maximum likelihood and cramer raobound. IEEE Transactions on ASSP, 1989; 37 (5) : 720-741.
  • 3Roy R, Kailath T. ESPRIT-estimation of signal parameters via ration- al techniques. IEEETransactions on Acoustic, Speech, and Signal Pro-cessing, 1989 ; 37 (7) : 984-995.
  • 4Nelson J F, Michael C, Jean L, et al. On the design of a compact neural network based DOA estimation system. IEEE Transactions on Anten-nas and Propagation, 2010 ; 58 (2) : 357-366.
  • 5Xiao-fei He, Shui-cheng Yan, Yu-xiao Hu, et al. Face recognition using Laplacian faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005 ; 27 (3) : 328-340.
  • 6于斌,尹成友,黄冶.阵列误差影响下的RBF神经网络波达方向估计[J].微波学报,2007,23(6):21-25. 被引量:12
  • 7Nelson J F, Michael C, Jean L, et al. On the design of a compactneural network-based DOA estimation system [ J]. IEEE Trans onAntennas and Propagation, 2010,58(2) : 357-366.
  • 8Shi Yuhui, Eberhart R C. A modified particle swarm optimizer [C] //Proc of IEEE International Conference on Evolutionary Computation.1998: 69-73.
  • 9Rumelhart D E, Hinton G E,Williams R J. Learning re-presentationsby back-propagation error [ J]. Nature, 1986, 323(9) : 533-536.
  • 10Veronese L, Krohling R. Swarm’s flight: accelerating the particlesusing C-CUDA [ C]//Proc of IEEE Congress on Evolutionary Compu-tation. 2009: 3264-3270.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部