期刊文献+

数格子——一种简单的盲源分离方法 被引量:1

Grid-Box-Counting:A Simple Method for Blind Source Separation
在线阅读 下载PDF
导出
摘要 将多个随机变量的实现的每个分量分别用相应随机变量的分布函数变换 ,再将值域空间划分为均匀格栅 ,则格栅中被占据的格子数目的期望当这些随机变量相互独立时最大。本文发现了这一有趣的规律 ,对其作出了理论解释 ,并据此提出了一种简单的盲源分离方法。该方法能够分离各种源信号且易于用数字硬件实现。 Each coordinate of the realizations of several random variables (RVs) by the distribution function of the corresponding RV and partition the range space is transformed into a uniform grid. This expected number of occupied grid-boxes will be greatest when these RVs are independent. This paper finds this interesting rule, gives a theoretical explanations, and proposes a simple method for blind source separation (BSS). This new method can separate various kinds of signals and it is in favor of digital implementation.
出处 《数据采集与处理》 CSCD 2002年第1期5-9,共5页 Journal of Data Acquisition and Processing
关键词 独立性 盲源分离 信号处理 数格子 随机变量 independence blind source separation signal processing
  • 相关文献

参考文献4

  • 1[1]Comon P.Independent component analysis,A new concept[J].Signal Processing,1994,36:287~314
  • 2[2]Hyvarinen A,Oja E.A fast fixed-point algorithm for independent component analysis[J].Neural Computation,1997,9:1483~1492
  • 3[3]Lee T W,Girolami M,Sejnowski T.Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources[J].Neural Computation,1999,11:417~441
  • 4[4]Pearlmutter B A,Parra L C.A context-sensitive generalization of ICA[C].In: ICONIP′96,Hong Kong,1996.151~157

同被引文献9

  • 1Hérault J,Jutten C.Blind separation of sources,Part Ⅰ:an adaptive algorithm based on neuro mimetic[J].Signal Processing,1991,24 (1):1-10.
  • 2Comon Pierre.Independent component analysis,a new concept ?[J].Signal Processing,1994,36(3):287-314.
  • 3Amari S,Cichocki A.A new learning algorithm for blind source separation[C] // Advances in Neural Information Processing.Cambridge,MA:MIT Press,1996,8:657-663.
  • 4Cardoso J F.Blind signal separation:statistical principles[J].Proc.IEEE Special Issue on Blind Identification and Estimation,1998,86 (10):2 009-2 025.
  • 5Vlassis N,Motomura Y.Efficient source adaptivity in independent component analysis[J].IEEE Trans.Neural Networks,2001,12:559-566.
  • 6Boscolo Cardo,PAN Hong,et al.Independent component analysis based on nonparametric density estimation[J].IEEE Transactions on Neural Networks,2004,15(1):55-65.
  • 7吴小培,冯焕清,周荷琴,王涛.基于独立分量分析的混合声音信号分离[J].中国科学技术大学学报,2001,31(1):68-73. 被引量:23
  • 8章晋龙,何昭水,谢胜利.基于遗传算法的有序盲信号提取[J].电子学报,2004,32(4):616-619. 被引量:7
  • 9李小军,朱孝龙,张贤达.盲信号分离研究分类与展望[J].西安电子科技大学学报,2004,31(3):399-404. 被引量:33

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部