期刊文献+

一种改进的多目标粒子群优化算法 被引量:9

Improved multi-objective particle swarm optimization algorithm
在线阅读 下载PDF
导出
摘要 提出一种改进的多目标粒子群优化算法,该算法采用精英归档策略,由档案库中的非劣解提供粒子速度更新时的全局最优位置,根据Pareto支配关系来更新粒子的个体最优位置。使用非劣解目标的线密度度量非劣解前端的均匀性,通过删除小密度的非劣解提高非劣解前端的均匀性。针对多目标进化算法理论型指标的不足,设计了应用型评价指标。标准函数的仿真实验结果表明,所提算法能够获得大量的非劣解,快速地收敛于Pareto最优解前端,且分布比较均匀。 An Improved Multi-Objective Particle Swarm Optimization(IMOPSO) algorithm is proposed,in which elitism archived strategy is used,global best position is provided by non-dominated solutions in the archive and individual best position is updated based on Pareto dominance.The algorithm uses objective solutions linear density to measure non-dominated solutions quality and employs the strategy of deleting low density non-dominated solutions to enhance non-dominated solutions uniformity.To overcome the shortcoming of theoretical index in multi-objective evolution algorithm,a practical index is developed.Simulation results on benchmark functions show the proposed method can obtain a lot of non-dominated solutions,rapidly converge to the Pareto front and uniformly spread along the front.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第33期38-41,共4页 Computer Engineering and Applications
基金 江苏省自然科学基金No.06KJB510040~~
关键词 粒子群 多目标进化算法 PARETO最优 精英策略 归档技术 particle swarm multi-objective evolutionary algorithm Pareto optimal elitism strategy archive technique
  • 相关文献

参考文献8

  • 1郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7):187-192. 被引量:52
  • 2李宁,邹彤,孙德宝,秦元庆.基于粒子群的多目标优化算法[J].计算机工程与应用,2005,41(23):43-46. 被引量:54
  • 3Kennedy J,Eberhart R.Particle swarm optimization[C]//Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway,NY:IEEE Service Center, 1995:1942-1948.
  • 4Zitzler E,Deb K,Thiele L.Comparison of muhiobjective evolutionary algorithms:Empirical resuhs[J].Evolutionary Computation,2000,8(2): 173-195.
  • 5Meng H Y,Zhang X H,Liu S Y.New quality measures for multiobjective programming[C]//LNCS 3612:International Conference on Advances in Natural Computation,2005.
  • 6Shi Y,Eberhart R.Parameter selection in particle swarm optimization[C]//Proceedings of the 7th Annual Conference on Evolutionary Programming,Washington DC, 1998 : 591-600.
  • 7Coello C C A.A comprehensive survey of evolutionary based multiobjective optimization techniques[J].Knowledge and Information Systems, 1999,1 ( 3 ) : 269-308.
  • 8Fonseca C M,Fleming P J.Genetic algorithms for multiobjective optimization:Formulation,discussion and generalization[C]//Proceedings of the 5th International Conference on Genetic Algorithms.California:Morgan Kaufmann, 1993:416-423.

二级参考文献53

  • 1Pareto V.Cours D'Economic Politique,volume I and Ⅱ [M].F Rouge,Lausamme, 1896.
  • 2E Zitzler.Evolutionary algorithms for multiobjective optimization: methods and applications[D].Ph D thesis.Swiss Federal Institute of Technology,Zurich, 1999.
  • 3J Kennedy,R C Eberhart.Particle Swarm Optimization[C].In:Proc IEEE International Conference on Neural Networks, 1995.
  • 4R C Eberhart,Y Shi.Partiele swarm opt mization:developments,applications and resources[C].In:Proc,Congress on Evolutionary Computation 2001, Piscataway, NJ:IEEE Press,2001:81-86.
  • 5C A Coello Coello,M S Lechuga. MOPSO: A proposal for multiple objective particle swarm optimization[C]JrrIEEE Congress on Evolutionary Computation (CEC 2002 ), Honolulu, Hawaii, USA, 2002:1051 - 1056.
  • 6C A Coello Coello,G T Pulido, M S Lechuga. Handling multiple objectives with particle swarm optimization[J].IEEE Trans on Evolutionary Computation, 2004;8(3) :256-279.
  • 7K E Parsopoulos,M N Varhatis. Particle swarm optimization method in multiobjective problems[C].In : Proc, ACM Symp on Applied Computing,Madrid, Spain, 2002:603-607.
  • 8X Hu,R C Eberhart.Muhiobjective using dynamic neighborhood particle swarm optimization[C].In:Proc,Congress Evolutionary Compution, Honolulu,Hawaii, USA, 2002:1677-1681.
  • 9X Hu,R C Eberhart,Y Shi.Particle swarm with extended memory for multiobjective particle swarm optimization[C].In : Proc IEEE Swarm Intelligence Symp, Indianapolies, IN, USA, 2003:193-197.
  • 10E Zitzler, M Laumanns,L T C Fonseca et al.Why quality assessment of Multiobjective optimizers is difficult[C].In :Proc of the Genetic and Evolutionary Computation Conference (GECCO 2002 ), 2002:666-674.

共引文献103

同被引文献91

引证文献9

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部